Rohanberiwal commented on issue #41702:
URL: https://github.com/apache/airflow/issues/41702#issuecomment-2309936325

   Hi , i have worked on this  issue from past two days and I came up with a 
solution . I made certin chnage in the exisiting code and  added the execute 
function inside the operation class that does the same work that your 
run_onnx_intefence() does . Please see this code and tell me if the code 
anywhere  matches the frequency of your expections .
   
   Python
   
   import onnxruntime as ort
   from airflow.models import BaseOperator
   from airflow.utils.decorators import apply_defaults
   from airflow import DAG
   from datetime import datetime
   
   class ONNXInferenceOperator(BaseOperator):
       @apply_defaults
       def __init__(self, model_path: str, input_data: dict, *args, **kwargs):
           super(ONNXInferenceOperator, self).__init__(*args, **kwargs)
           self.model_path = model_path
           self.input_data = input_data
   
       def execute(self, context):
           session = ort.InferenceSession(self.model_path)
           input_name = session.get_inputs()[0].name
           result = session.run(None, {input_name: self.input_data})
           self.log.info(f"Inference result: {result}")
           return result
   
   with DAG(
       dag_id='onnx_inference_dag',
       start_date=datetime(2023, 1, 1),
       schedule_interval='@once',
       catchup=False
   ) as dag:
   
       inference_task = ONNXInferenceOperator(
           task_id='onnx_inference_task',
           model_path='/path/to/your/model.onnx',
           input_data={"your_input_key": [[1.0, 2.0, 3.0]]}
       )
   
       inference_task
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to