Rohanberiwal commented on issue #41702:
URL: https://github.com/apache/airflow/issues/41702#issuecomment-2329345801

   # ONNX Inference Operator for Apache Airflow
   
   ## Description
   
   The `ONNXInferenceOperator` is a custom operator designed for running 
inference using ONNX models within an Apache Airflow DAG. This operator 
leverages the `onnxruntime` library to load an ONNX model and perform inference 
on provided input data. The results of the inference are logged and returned.
   
   ### Components
   
   1. **ONNXInferenceOperator**: A custom Airflow operator that initializes 
with the path to the ONNX model and the input data. It performs inference in 
the `execute` method and logs the results.
   
   2. **run_onnx_inference**: A helper function that demonstrates how to run 
inference using the `onnxruntime` library directly within a PythonOperator. 
This function is provided as an alternative approach to using the custom 
operator.
   
   3. **DAG Definition**: Defines an Airflow DAG named `onnx_inference_dag` 
that schedules the inference task to run once.
   
   ## Code
   
   ```python
   import onnxruntime as ort
   from airflow import DAG
   from airflow.models import BaseOperator
   from airflow.utils.decorators import apply_defaults
   from airflow.operators.python import PythonOperator
   from datetime import datetime
   
   class ONNXInferenceOperator(BaseOperator):
       @apply_defaults
       def __init__(self, model_path: str, input_data: dict, *args, **kwargs):
           super(ONNXInferenceOperator, self).__init__(*args, **kwargs)
           self.model_path = model_path
           self.input_data = input_data
   
       def execute(self, context):
           session = ort.InferenceSession(self.model_path)
           input_name = session.get_inputs()[0].name
           result = session.run(None, {input_name: self.input_data})
           self.log.info(f"Inference result: {result}")
           return result
   
   def run_onnx_inference():
       model_path = '/path/to/your/model.onnx'
       session = ort.InferenceSession(model_path)
       input_name = session.get_inputs()[0].name
       input_data = {"your_input_key": [[1.0, 2.0, 3.0]]}
       result = session.run(None, {input_name: input_data})
       print(result)
   
   with DAG(
       dag_id='onnx_inference_dag',
       start_date=datetime(2023, 1, 1),
       schedule_interval='@once',
       catchup=False
   ) as dag:
   
       inference_task = ONNXInferenceOperator(
           task_id='onnx_inference_task',
           model_path='/path/to/your/model.onnx',
           input_data={"your_input_key": [[1.0, 2.0, 3.0]]}
       )
   
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to