This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/arrow-site.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new b3515874472 Updating dev docs (build )
b3515874472 is described below

commit b3515874472d933135d06c8328f56820d0cce0cd
Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
AuthorDate: Mon Oct 20 00:35:38 2025 +0000

    Updating dev docs (build )
---
 ...id-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg |   2 +-
 docs/dev/python/data.html                          |  46 +++----
 docs/dev/python/dataset.html                       | 136 ++++++++++-----------
 docs/dev/python/getstarted.html                    |   2 +-
 docs/dev/python/memory.html                        |   8 +-
 docs/dev/python/pandas.html                        |   6 +-
 docs/dev/python/parquet.html                       |  12 +-
 docs/dev/r/pkgdown.yml                             |   2 +-
 docs/dev/searchindex.js                            |   2 +-
 9 files changed, 108 insertions(+), 108 deletions(-)

diff --git 
a/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg 
b/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg
index 2a3e938c407..9b1dc1aad8b 100644
--- a/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg
+++ b/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg
@@ -1 +1 @@
-<svg id="my-svg" width="100%" xmlns="http://www.w3.org/2000/svg"; 
xmlns:xlink="http://www.w3.org/1999/xlink"; class="flowchart" style="max-width: 
1645.73px; background-color: white;" viewBox="0 0 1645.734375 786.1171875" 
role="graphics-document document" 
aria-roledescription="flowchart-v2"><style>#my-svg{font-family:"trebuchet 
ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}@keyframes 
edge-animation-frame{from{stroke-dashoffset:0;}}@keyframes 
dash{to{stroke-dashoffset:0;}}#my-svg .e [...]
\ No newline at end of file
+<svg id="my-svg" width="100%" xmlns="http://www.w3.org/2000/svg"; 
xmlns:xlink="http://www.w3.org/1999/xlink"; class="flowchart" style="max-width: 
1645.73px; background-color: white;" viewBox="0 0 1645.734375 786.1171875" 
role="graphics-document document" 
aria-roledescription="flowchart-v2"><style>#my-svg{font-family:"trebuchet 
ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}@keyframes 
edge-animation-frame{from{stroke-dashoffset:0;}}@keyframes 
dash{to{stroke-dashoffset:0;}}#my-svg .e [...]
\ No newline at end of file
diff --git a/docs/dev/python/data.html b/docs/dev/python/data.html
index e75c72b7f68..7ea1af9b7ea 100644
--- a/docs/dev/python/data.html
+++ b/docs/dev/python/data.html
@@ -1684,7 +1684,7 @@ for you:</p>
 
 <span class="gp">In [29]: </span><span class="n">arr</span>
 <span class="gh">Out[29]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcba8c7c760&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5419bc76a0&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
@@ -1696,7 +1696,7 @@ for you:</p>
 <p>But you may also pass a specific data type to override type inference:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [30]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([</span><span class="mi">1</span><span class="p">,</span> <span 
class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">pa</span><span class="o">.</span><span 
class="n">uint16</span><span class="p">())</span>
 <span class="gh">Out[30]: </span>
-<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7fcba8c7cbe0&gt;</span>
+<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7f5419bc7b80&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2</span>
@@ -1731,7 +1731,7 @@ nulls:</p>
 <p>Arrays can be sliced without copying:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [36]: </span><span 
class="n">arr</span><span class="p">[</span><span class="mi">1</span><span 
class="p">:</span><span class="mi">3</span><span class="p">]</span>
 <span class="gh">Out[36]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcba8c7d060&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5419944460&gt;</span>
 <span class="go">[</span>
 <span class="go">  2,</span>
 <span class="go">  null</span>
@@ -1784,7 +1784,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 
 <span class="gp">In [45]: </span><span class="n">arr</span>
 <span class="gh">Out[45]: </span>
-<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7fcba8c7dcc0&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7f5419945060&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    5,</span>
@@ -1809,7 +1809,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 dictionaries:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [46]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;z& [...]
 <span class="gh">Out[46]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcba8c7e200&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5419945480&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int64</span>
 <span class="go">  [</span>
@@ -1836,7 +1836,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [48]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">2</span><span class="p">,</span [...]
 <span class="gh">Out[48]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcba8c7e500&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5419945b40&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1851,7 +1851,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [49]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([(</span><span 
class="mi">3</span><span class="p">,</span> <span class="kc">True</span><span 
class="p">),</span> <span class="p">(</span><span class="mi">4</span><span 
class="p">,</span> <span class="kc">False</span><span class="p">)],</span> 
<span class="nb">type</span><span class="o">=</span><span 
class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[49]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcba8c7ea40&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5419945c60&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1870,7 +1870,7 @@ level and at the individual field level.  If initializing 
from a sequence
 of Python dicts, a missing dict key is handled as a null value:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [50]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">},</span> <span 
class="kc">None</span><span class="p">,</span> <span class="p">{</span><span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="kc">None</s 
[...]
 <span class="gh">Out[50]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcba8c7e980&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5419945d20&gt;</span>
 <span class="go">-- is_valid:</span>
 <span class="go">  [</span>
 <span class="go">    true,</span>
@@ -1905,7 +1905,7 @@ individual arrays, and no copy is involved:</p>
 
 <span class="gp">In [55]: </span><span class="n">arr</span>
 <span class="gh">Out[55]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcba8c7f220&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f54199464a0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
@@ -1932,7 +1932,7 @@ the type is explicitly passed into <a class="reference 
internal" href="generated
 
 <span class="gp">In [58]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[58]: </span>
-<span class="go">&lt;pyarrow.lib.MapArray object at 0x7fcba8c7f6a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.MapArray object at 0x7f54199468c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  keys:</span>
 <span class="go">  [</span>
@@ -1966,7 +1966,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [60]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">keys</span>
 <span class="gh">Out[60]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcba8c7f7c0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f5419946b60&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;x&quot;,</span>
 <span class="go">  &quot;y&quot;,</span>
@@ -1975,7 +1975,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [61]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">items</span>
 <span class="gh">Out[61]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcba8c7d360&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5419946c80&gt;</span>
 <span class="go">[</span>
 <span class="go">  4,</span>
 <span class="go">  5,</span>
@@ -1984,7 +1984,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [62]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">keys</span><span class="p">)</span>
 <span class="gh">Out[62]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7fcba8c7fc40&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f5419946e60&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    &quot;x&quot;,</span>
@@ -1997,7 +1997,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [63]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">items</span><span class="p">)</span>
 <span class="gh">Out[63]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7fcba8c7fca0&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f5419946e00&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    4,</span>
@@ -2032,7 +2032,7 @@ selected:</p>
 
 <span class="gp">In [69]: </span><span class="n">union_arr</span>
 <span class="gh">Out[69]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7fcba8cc8100&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f54199458a0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2071,7 +2071,7 @@ each offset in the selected child array it can be 
found:</p>
 
 <span class="gp">In [76]: </span><span class="n">union_arr</span>
 <span class="gh">Out[76]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7fcba8cc8ac0&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f5419947ac0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2120,7 +2120,7 @@ consider an example:</p>
 
 <span class="gp">In [80]: </span><span class="n">dict_array</span>
 <span class="gh">Out[80]: </span>
-<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7fcba8cccc80&gt;</span>
+<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7f541997c3c0&gt;</span>
 
 <span class="go">-- dictionary:</span>
 <span class="go">  [</span>
@@ -2147,7 +2147,7 @@ consider an example:</p>
 
 <span class="gp">In [82]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[82]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcba8cc95a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f54199841c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -2161,7 +2161,7 @@ consider an example:</p>
 
 <span class="gp">In [83]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[83]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcba8cc96c0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f54199844c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2217,7 +2217,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [90]: </span><span class="n">batch</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[90]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcba8cc9480&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f5419944be0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2231,7 +2231,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [92]: </span><span class="n">batch2</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[92]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcba8cca6e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f54199852a0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;bar&quot;,</span>
 <span class="go">  &quot;baz&quot;,</span>
@@ -2275,7 +2275,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [98]: </span><span class="n">c</span>
 <span class="gh">Out[98]: </span>
-<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7fcba8cca980&gt;</span>
+<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7f54199471c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    1,</span>
@@ -2309,7 +2309,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [100]: </span><span class="n">c</span><span 
class="o">.</span><span class="n">chunk</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[100]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcba8ccb040&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f54199858a0&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
diff --git a/docs/dev/python/dataset.html b/docs/dev/python/dataset.html
index 39b0fc9a711..8e325216f80 100644
--- a/docs/dev/python/dataset.html
+++ b/docs/dev/python/dataset.html
@@ -1570,7 +1570,7 @@ can pass it the path to the directory containing the data 
files:</p>
 <span class="gp">In [12]: </span><span class="n">dataset</span> <span 
class="o">=</span> <span class="n">ds</span><span class="o">.</span><span 
class="n">dataset</span><span class="p">(</span><span class="n">base</span> 
<span class="o">/</span> <span 
class="s2">&quot;parquet_dataset&quot;</span><span class="p">,</span> <span 
class="nb">format</span><span class="o">=</span><span 
class="s2">&quot;parquet&quot;</span><span class="p">)</span>
 
 <span class="gp">In [13]: </span><span class="n">dataset</span>
-<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7fcba8b496c0&gt;</span>
+<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7f54199cbfa0&gt;</span>
 </pre></div>
 </div>
 <p>In addition to searching a base directory, <a class="reference internal" 
href="generated/pyarrow.dataset.dataset.html#pyarrow.dataset.dataset" 
title="pyarrow.dataset.dataset"><code class="xref py py-func docutils literal 
notranslate"><span class="pre">dataset()</span></code></a> accepts a path to a
@@ -1579,8 +1579,8 @@ single file or a list of file paths.</p>
 needed, it only crawls the directory to find all the files:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [14]: </span><span 
class="n">dataset</span><span class="o">.</span><span class="n">files</span>
 <span class="gh">Out[14]: </span>
-<span 
class="go">[&#39;/tmp/pyarrow-8bj7u7fa/parquet_dataset/data1.parquet&#39;,</span>
-<span class="go"> 
&#39;/tmp/pyarrow-8bj7u7fa/parquet_dataset/data2.parquet&#39;]</span>
+<span 
class="go">[&#39;/tmp/pyarrow-odq2rzoi/parquet_dataset/data1.parquet&#39;,</span>
+<span class="go"> 
&#39;/tmp/pyarrow-odq2rzoi/parquet_dataset/data2.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>… and infers the dataset’s schema (by default from the first file):</p>
@@ -1601,23 +1601,23 @@ this can require a lot of memory, see below on 
filtering / iterative loading):</
 <span class="go">c: int64</span>
 <span class="gt">----</span>
 <span class="ne">a</span>: [[0,1,2,3,4],[5,6,7,8,9]]
-<span class="ne">b</span>: 
[[-1.0392914886434592,-2.4071560595915398,0.08952020335275415,-1.3893238239516514,0.9388640014384205],[-1.535382611654841,0.7513826450151349,0.4475002548414337,0.6942503170976002,-0.8625152680746336]]
+<span class="ne">b</span>: 
[[-0.603968523100297,1.3470317051434357,0.0032982130679641733,-1.0285784519874723,-0.8049286698300656],[1.4065595576556302,0.18660427623495154,-0.06052386186116419,-0.29028233482389565,1.7052867372507035]]
 <span class="ne">c</span>: [[1,2,1,2,1],[2,1,2,1,2]]
 
 <span class="c1"># converting to pandas to see the contents of the scanned 
table</span>
 <span class="gp">In [17]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[17]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0 -1.039291  1</span>
-<span class="go">1  1 -2.407156  2</span>
-<span class="go">2  2  0.089520  1</span>
-<span class="go">3  3 -1.389324  2</span>
-<span class="go">4  4  0.938864  1</span>
-<span class="go">5  5 -1.535383  2</span>
-<span class="go">6  6  0.751383  1</span>
-<span class="go">7  7  0.447500  2</span>
-<span class="go">8  8  0.694250  1</span>
-<span class="go">9  9 -0.862515  2</span>
+<span class="go">0  0 -0.603969  1</span>
+<span class="go">1  1  1.347032  2</span>
+<span class="go">2  2  0.003298  1</span>
+<span class="go">3  3 -1.028578  2</span>
+<span class="go">4  4 -0.804929  1</span>
+<span class="go">5  5  1.406560  2</span>
+<span class="go">6  6  0.186604  1</span>
+<span class="go">7  7 -0.060524  2</span>
+<span class="go">8  8 -0.290282  1</span>
+<span class="go">9  9  1.705287  2</span>
 </pre></div>
 </div>
 </section>
@@ -1640,11 +1640,11 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [21]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[21]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0 -1.039291  1</span>
-<span class="go">1  1 -2.407156  2</span>
-<span class="go">2  2  0.089520  1</span>
-<span class="go">3  3 -1.389324  2</span>
-<span class="go">4  4  0.938864  1</span>
+<span class="go">0  0 -0.603969  1</span>
+<span class="go">1  1  1.347032  2</span>
+<span class="go">2  2  0.003298  1</span>
+<span class="go">3  3 -1.028578  2</span>
+<span class="go">4  4 -0.804929  1</span>
 </pre></div>
 </div>
 </section>
@@ -1676,16 +1676,16 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [23]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span class="p">[</span><span 
class="s1">&#39;a&#39;</span><span class="p">,</span> <span 
class="s1">&#39;b&#39;</span><span class="p">])</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[23]: </span>
 <span class="go">   a         b</span>
-<span class="go">0  0 -1.039291</span>
-<span class="go">1  1 -2.407156</span>
-<span class="go">2  2  0.089520</span>
-<span class="go">3  3 -1.389324</span>
-<span class="go">4  4  0.938864</span>
-<span class="go">5  5 -1.535383</span>
-<span class="go">6  6  0.751383</span>
-<span class="go">7  7  0.447500</span>
-<span class="go">8  8  0.694250</span>
-<span class="go">9  9 -0.862515</span>
+<span class="go">0  0 -0.603969</span>
+<span class="go">1  1  1.347032</span>
+<span class="go">2  2  0.003298</span>
+<span class="go">3  3 -1.028578</span>
+<span class="go">4  4 -0.804929</span>
+<span class="go">5  5  1.406560</span>
+<span class="go">6  6  0.186604</span>
+<span class="go">7  7 -0.060524</span>
+<span class="go">8  8 -0.290282</span>
+<span class="go">9  9  1.705287</span>
 </pre></div>
 </div>
 <p>With the <code class="docutils literal notranslate"><span 
class="pre">filter</span></code> keyword, rows which do not match the filter 
predicate will
@@ -1694,18 +1694,18 @@ not be included in the returned table. The keyword 
expects a boolean
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [24]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;a&#39;</span><span class="p">)</span> <span 
class="o">&gt;=</span> <span class="mi">7</sp [...]
 <span class="gh">Out[24]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  7  0.447500  2</span>
-<span class="go">1  8  0.694250  1</span>
-<span class="go">2  9 -0.862515  2</span>
+<span class="go">0  7 -0.060524  2</span>
+<span class="go">1  8 -0.290282  1</span>
+<span class="go">2  9  1.705287  2</span>
 
 <span class="gp">In [25]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;c&#39;</span><span class="p">)</span> <span class="o">==</span> 
<span class="mi">2</span><span class="p">)</span><span class="o">.</span><span 
class="n">to_pandas</span><spa [...]
 <span class="gh">Out[25]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  1 -2.407156  2</span>
-<span class="go">1  3 -1.389324  2</span>
-<span class="go">2  5 -1.535383  2</span>
-<span class="go">3  7  0.447500  2</span>
-<span class="go">4  9 -0.862515  2</span>
+<span class="go">0  1  1.347032  2</span>
+<span class="go">1  3 -1.028578  2</span>
+<span class="go">2  5  1.406560  2</span>
+<span class="go">3  7 -0.060524  2</span>
+<span class="go">4  9  1.705287  2</span>
 </pre></div>
 </div>
 <p>The easiest way to construct those <a class="reference internal" 
href="generated/pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" 
title="pyarrow.dataset.Expression"><code class="xref py py-class docutils 
literal notranslate"><span class="pre">Expression</span></code></a> objects is 
by using the
@@ -1750,11 +1750,11 @@ values:</p>
 <span class="gp">In [30]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[30]: </span>
 <span class="go">   a_renamed  b_as_float32    c_1</span>
-<span class="go">0          0     -1.039292   True</span>
-<span class="go">1          1     -2.407156  False</span>
-<span class="go">2          2      0.089520   True</span>
-<span class="go">3          3     -1.389324  False</span>
-<span class="go">4          4      0.938864   True</span>
+<span class="go">0          0     -0.603969   True</span>
+<span class="go">1          1      1.347032  False</span>
+<span class="go">2          2      0.003298   True</span>
+<span class="go">3          3     -1.028578  False</span>
+<span class="go">4          4     -0.804929   True</span>
 </pre></div>
 </div>
 <p>The dictionary also determines the column selection (only the keys in the
@@ -1768,11 +1768,11 @@ build up the dictionary from the dataset schema:</p>
 <span class="gp">In [33]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[33]: </span>
 <span class="go">   a         b  c  b_large</span>
-<span class="go">0  0 -1.039291  1    False</span>
-<span class="go">1  1 -2.407156  2    False</span>
-<span class="go">2  2  0.089520  1    False</span>
-<span class="go">3  3 -1.389324  2    False</span>
-<span class="go">4  4  0.938864  1    False</span>
+<span class="go">0  0 -0.603969  1    False</span>
+<span class="go">1  1  1.347032  2     True</span>
+<span class="go">2  2  0.003298  1    False</span>
+<span class="go">3  3 -1.028578  2    False</span>
+<span class="go">4  4 -0.804929  1    False</span>
 </pre></div>
 </div>
 </section>
@@ -1825,8 +1825,8 @@ should use a hive-like partitioning scheme with the <code 
class="docutils litera
 
 <span class="gp">In [37]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">files</span>
 <span class="gh">Out[37]: </span>
-<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/246d5d878a4e4689a3c169e4fc44b52f-0.parquet&#39;,</span>
-<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/246d5d878a4e4689a3c169e4fc44b52f-0.parquet&#39;]</span>
+<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/fc6d3e6783f645e380ec123bc21eabd1-0.parquet&#39;,</span>
+<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/fc6d3e6783f645e380ec123bc21eabd1-0.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>Although the partition fields are not included in the actual Parquet files,
@@ -1834,9 +1834,9 @@ they will be added back to the resulting table when 
scanning this dataset:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [38]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span><span 
class="o">.</span><span class="n">head</span><span class="p">(</span><span 
class="mi">3</span><span class="p">)</span>
 <span class="gh">Out[38]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  0 -0.658489  1    a</span>
-<span class="go">1  1 -0.336722  2    a</span>
-<span class="go">2  2 -0.959933  1    a</span>
+<span class="go">0  0 -1.463996  1    a</span>
+<span class="go">1  1 -1.131574  2    a</span>
+<span class="go">2  2  1.089129  1    a</span>
 </pre></div>
 </div>
 <p>We can now filter on the partition keys, which avoids loading files
@@ -1844,11 +1844,11 @@ altogether if they do not match the filter:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [39]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s2">&quot;part&quot;</span><span class="p">)</span> <span 
class="o">==</span> <span class="s2">&qu [...]
 <span class="gh">Out[39]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  5 -1.343863  2    b</span>
-<span class="go">1  6  0.201649  1    b</span>
-<span class="go">2  7 -0.078291  2    b</span>
-<span class="go">3  8 -0.112100  1    b</span>
-<span class="go">4  9 -1.023667  2    b</span>
+<span class="go">0  5  0.338455  2    b</span>
+<span class="go">1  6 -1.484195  1    b</span>
+<span class="go">2  7  0.349891  2    b</span>
+<span class="go">3  8 -0.242663  1    b</span>
+<span class="go">4  9 -0.524458  2    b</span>
 </pre></div>
 </div>
 <section id="different-partitioning-schemes">
@@ -1980,19 +1980,19 @@ is materialized as columns when reading the data and 
can be used for filtering:<
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [47]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[47]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2018     0 -0.288094</span>
-<span class="go">1  2018     1  0.553874</span>
-<span class="go">2  2018     2  0.411966</span>
-<span class="go">3  2019     0 -0.288094</span>
-<span class="go">4  2019     1  0.553874</span>
-<span class="go">5  2019     2  0.411966</span>
+<span class="go">0  2018     0 -1.004822</span>
+<span class="go">1  2018     1  0.700311</span>
+<span class="go">2  2018     2  1.367356</span>
+<span class="go">3  2019     0 -1.004822</span>
+<span class="go">4  2019     1  0.700311</span>
+<span class="go">5  2019     2  1.367356</span>
 
 <span class="gp">In [48]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;year&#39;</span><span class="p">)</span> <span 
class="o">==</span> <span class="mi">2019</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</spa [...]
 <span class="gh">Out[48]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2019     0 -0.288094</span>
-<span class="go">1  2019     1  0.553874</span>
-<span class="go">2  2019     2  0.411966</span>
+<span class="go">0  2019     0 -1.004822</span>
+<span class="go">1  2019     1  0.700311</span>
+<span class="go">2  2019     2  1.367356</span>
 </pre></div>
 </div>
 <p>Another benefit of manually listing the files is that the order of the files
@@ -2244,7 +2244,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="gp">   ....: </span>
 <span class="go">path=dataset_visited/c=1/part-0.parquet</span>
 <span class="go">size=824 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7fcba4a383b0&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f54198b1b20&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
@@ -2253,7 +2253,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="go">  serialized_size: 0</span>
 <span class="go">path=dataset_visited/c=2/part-0.parquet</span>
 <span class="go">size=826 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7fcba8b9f830&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f541996f970&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
diff --git a/docs/dev/python/getstarted.html b/docs/dev/python/getstarted.html
index 573d90c85aa..6140ba5e0e7 100644
--- a/docs/dev/python/getstarted.html
+++ b/docs/dev/python/getstarted.html
@@ -1595,7 +1595,7 @@ it’s possible to apply transformations to the data</p>
 
 <span class="gp">In [12]: </span><span class="n">pc</span><span 
class="o">.</span><span class="n">value_counts</span><span 
class="p">(</span><span class="n">birthdays_table</span><span 
class="p">[</span><span class="s2">&quot;years&quot;</span><span 
class="p">])</span>
 <span class="gh">Out[12]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcb7d6cf0a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f53ee5d63e0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
diff --git a/docs/dev/python/memory.html b/docs/dev/python/memory.html
index 9dca56c50a0..0af0f0c28dd 100644
--- a/docs/dev/python/memory.html
+++ b/docs/dev/python/memory.html
@@ -1544,7 +1544,7 @@ a bytes object:</p>
 <span class="gp">In [3]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">pa</span><span class="o">.</span><span 
class="n">py_buffer</span><span class="p">(</span><span 
class="n">data</span><span class="p">)</span>
 
 <span class="gp">In [4]: </span><span class="n">buf</span>
-<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7fcb75e7bcd0 size=26 is_cpu=True is_mutable=False&gt;</span>
+<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7f53e6dbb310 size=26 is_cpu=True is_mutable=False&gt;</span>
 
 <span class="gp">In [5]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">size</span>
 <span class="gh">Out[5]: </span><span class="go">26</span>
@@ -1557,7 +1557,7 @@ referenced using the <a class="reference internal" 
href="generated/pyarrow.forei
 <p>Buffers can be used in circumstances where a Python buffer or memoryview is
 required, and such conversions are zero-copy:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [6]: </span><span 
class="nb">memoryview</span><span class="p">(</span><span 
class="n">buf</span><span class="p">)</span>
-<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7fcb7c4add80&gt;</span>
+<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7f53ec39dd80&gt;</span>
 </pre></div>
 </div>
 <p>The Buffer’s <a class="reference internal" 
href="generated/pyarrow.Buffer.html#pyarrow.Buffer.to_pybytes" 
title="pyarrow.Buffer.to_pybytes"><code class="xref py py-meth docutils literal 
notranslate"><span class="pre">to_pybytes()</span></code></a> method converts 
the Buffer’s data to a
@@ -1756,7 +1756,7 @@ into Arrow Buffer objects, use <code class="docutils 
literal notranslate"><span
 <span class="gp">In [32]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">mmap</span><span class="o">.</span><span 
class="n">read_buffer</span><span class="p">(</span><span 
class="mi">4</span><span class="p">)</span>
 
 <span class="gp">In [33]: </span><span class="nb">print</span><span 
class="p">(</span><span class="n">buf</span><span class="p">)</span>
-<span class="go">&lt;pyarrow.Buffer address=0x7fcc53fc9000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
+<span class="go">&lt;pyarrow.Buffer address=0x7f54c4f73000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
 
 <span class="gp">In [34]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">to_pybytes</span><span class="p">()</span>
 <span class="gh">Out[34]: </span><span class="go">b&#39;some&#39;</span>
@@ -1778,7 +1778,7 @@ file interfaces that can read and write to Arrow 
Buffers.</p>
 <span class="gp">In [37]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">writer</span><span class="o">.</span><span 
class="n">getvalue</span><span class="p">()</span>
 
 <span class="gp">In [38]: </span><span class="n">buf</span>
-<span class="gh">Out[38]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7fcbe98400c0 size=14 is_cpu=True is_mutable=True&gt;</span>
+<span class="gh">Out[38]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7f545a8f00c0 size=14 is_cpu=True is_mutable=True&gt;</span>
 
 <span class="gp">In [39]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">size</span>
 <span class="gh">Out[39]: </span><span class="go">14</span>
diff --git a/docs/dev/python/pandas.html b/docs/dev/python/pandas.html
index f16b1d6fa19..7718a9540f2 100644
--- a/docs/dev/python/pandas.html
+++ b/docs/dev/python/pandas.html
@@ -1718,7 +1718,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [10]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[10]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcc367118a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f54a7f19300&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;a&quot;,</span>
 <span class="go">  &quot;b&quot;,</span>
@@ -1727,7 +1727,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [11]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[11]: </span>
-<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7fcc36711420&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7f54a7f18dc0&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -1853,7 +1853,7 @@ converted to an Arrow <code class="docutils literal 
notranslate"><span class="pr
 
 <span class="gp">In [33]: </span><span class="n">arr</span>
 <span class="gh">Out[33]: </span>
-<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7fcc36713fa0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7f54a7f1b400&gt;</span>
 <span class="go">[</span>
 <span class="go">  01:01:01.000000,</span>
 <span class="go">  02:02:02.000000</span>
diff --git a/docs/dev/python/parquet.html b/docs/dev/python/parquet.html
index 7c70c7725dd..9f93ad3cb3a 100644
--- a/docs/dev/python/parquet.html
+++ b/docs/dev/python/parquet.html
@@ -1689,7 +1689,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [20]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">metadata</span>
 <span class="gh">Out[20]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7fcb75dfa6b0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f54a7fc3dd0&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1699,7 +1699,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [21]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">schema</span>
 <span class="gh">Out[21]: </span>
-<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7fcc367a6200&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7f53ee662ac0&gt;</span>
 <span class="go">required group field_id=-1 schema {</span>
 <span class="go">  optional double field_id=-1 one;</span>
 <span class="go">  optional binary field_id=-1 two (String);</span>
@@ -1757,7 +1757,7 @@ concatenate them into a single table. You can read 
individual row groups with
 
 <span class="gp">In [30]: </span><span class="n">metadata</span>
 <span class="gh">Out[30]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7fcc3661c400&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f54a7fedd00&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1771,7 +1771,7 @@ concatenate them into a single table. You can read 
individual row groups with
 such as the row groups and column chunk metadata and statistics:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [31]: </span><span 
class="n">metadata</span><span class="o">.</span><span 
class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[31]: </span>
-<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7fcc3661ce50&gt;</span>
+<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7f53e46966b0&gt;</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
 <span class="go">  total_byte_size: 290</span>
@@ -1779,7 +1779,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 
 <span class="gp">In [32]: </span><span class="n">metadata</span><span 
class="o">.</span><span class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span><span class="o">.</span><span 
class="n">column</span><span class="p">(</span><span class="mi">0</span><span 
class="p">)</span>
 <span class="gh">Out[32]: </span>
-<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7fcc3661d170&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7f54a7fee890&gt;</span>
 <span class="go">  file_offset: 0</span>
 <span class="go">  file_path: </span>
 <span class="go">  physical_type: DOUBLE</span>
@@ -1787,7 +1787,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 <span class="go">  path_in_schema: one</span>
 <span class="go">  is_stats_set: True</span>
 <span class="go">  statistics:</span>
-<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7fcc3661d1c0&gt;</span>
+<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7f54a7fee930&gt;</span>
 <span class="go">      has_min_max: True</span>
 <span class="go">      min: -1.0</span>
 <span class="go">      max: 2.5</span>
diff --git a/docs/dev/r/pkgdown.yml b/docs/dev/r/pkgdown.yml
index e3c08473ea5..c31fbb204ec 100644
--- a/docs/dev/r/pkgdown.yml
+++ b/docs/dev/r/pkgdown.yml
@@ -21,7 +21,7 @@ articles:
   read_write: read_write.html
   developers/setup: developers/setup.html
   developers/workflow: developers/workflow.html
-last_built: 2025-10-18T01:27Z
+last_built: 2025-10-19T01:36Z
 urls:
   reference: https://arrow.apache.org/docs/r/reference
   article: https://arrow.apache.org/docs/r/articles
diff --git a/docs/dev/searchindex.js b/docs/dev/searchindex.js
index f33819bb7b7..3c4c32e41d8 100644
--- a/docs/dev/searchindex.js
+++ b/docs/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles":{"1st pass":[[83,"st-pass"]],"2nd 
pass":[[83,"nd-pass"]],"32-bit hash vs 64-bit 
hash":[[83,"bit-hash-vs-64-bit-hash"]],"8-bit Boolean":[[126,"bit-boolean"]],"A 
Database":[[9,"a-database"]],"A Library for Data 
Scientists":[[9,"a-library-for-data-scientists"]],"A Note on 
Linking":[[38,"a-note-on-linking"]],"A note on transactions & ACID 
guarantees":[[42,"a-note-on-transactions-acid-guarantees"],[185,"a-note-on-transactions-acid-guarantees"]],"ABI
 Structures":[[ [...]
\ No newline at end of file
+Search.setIndex({"alltitles":{"1st pass":[[83,"st-pass"]],"2nd 
pass":[[83,"nd-pass"]],"32-bit hash vs 64-bit 
hash":[[83,"bit-hash-vs-64-bit-hash"]],"8-bit Boolean":[[126,"bit-boolean"]],"A 
Database":[[9,"a-database"]],"A Library for Data 
Scientists":[[9,"a-library-for-data-scientists"]],"A Note on 
Linking":[[38,"a-note-on-linking"]],"A note on transactions & ACID 
guarantees":[[42,"a-note-on-transactions-acid-guarantees"],[185,"a-note-on-transactions-acid-guarantees"]],"ABI
 Structures":[[ [...]
\ No newline at end of file


Reply via email to