This is an automated email from the ASF dual-hosted git repository.
github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/arrow-site.git
The following commit(s) were added to refs/heads/asf-site by this push:
new ad7927a1bf6 Updating dev docs (build )
ad7927a1bf6 is described below
commit ad7927a1bf6600658b6689a2c3338ee30584cb9f
Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
AuthorDate: Mon Nov 10 00:36:08 2025 +0000
Updating dev docs (build )
---
...id-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg | 2 +-
docs/dev/python/data.html | 46 +++----
docs/dev/python/dataset.html | 136 ++++++++++-----------
docs/dev/python/getstarted.html | 2 +-
docs/dev/python/memory.html | 8 +-
docs/dev/python/pandas.html | 6 +-
docs/dev/python/parquet.html | 12 +-
docs/dev/r/articles/data_objects.html | 6 +-
docs/dev/r/articles/data_wrangling.html | 24 ++--
docs/dev/r/pkgdown.yml | 2 +-
docs/dev/r/search.json | 2 +-
docs/dev/searchindex.js | 2 +-
12 files changed, 124 insertions(+), 124 deletions(-)
diff --git
a/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg
b/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg
index 5a7e7b7dd4c..b91f2f522c5 100644
--- a/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg
+++ b/docs/dev/_images/mermaid-8ff51316a5bfe716c8346df112ea33beaa5228f4.svg
@@ -1 +1 @@
-<svg id="my-svg" width="100%" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" class="flowchart" style="max-width:
1645.73px; background-color: white;" viewBox="0 0 1645.734375 786.1171875"
role="graphics-document document"
aria-roledescription="flowchart-v2"><style>#my-svg{font-family:"trebuchet
ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}@keyframes
edge-animation-frame{from{stroke-dashoffset:0;}}@keyframes
dash{to{stroke-dashoffset:0;}}#my-svg .e [...]
\ No newline at end of file
+<svg id="my-svg" width="100%" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" class="flowchart" style="max-width:
1645.73px; background-color: white;" viewBox="0 0 1645.734375 786.1171875"
role="graphics-document document"
aria-roledescription="flowchart-v2"><style>#my-svg{font-family:"trebuchet
ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}@keyframes
edge-animation-frame{from{stroke-dashoffset:0;}}@keyframes
dash{to{stroke-dashoffset:0;}}#my-svg .e [...]
\ No newline at end of file
diff --git a/docs/dev/python/data.html b/docs/dev/python/data.html
index fc2c6e74da0..0d7bd7e73bb 100644
--- a/docs/dev/python/data.html
+++ b/docs/dev/python/data.html
@@ -1663,7 +1663,7 @@ for you:</p>
<span class="gp">In [29]: </span><span class="n">arr</span>
<span class="gh">Out[29]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fb2507c2740></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7fa450e57e20></span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
@@ -1675,7 +1675,7 @@ for you:</p>
<p>But you may also pass a specific data type to override type inference:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [30]: </span><span
class="n">pa</span><span class="o">.</span><span class="n">array</span><span
class="p">([</span><span class="mi">1</span><span class="p">,</span> <span
class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span
class="o">=</span><span class="n">pa</span><span class="o">.</span><span
class="n">uint16</span><span class="p">())</span>
<span class="gh">Out[30]: </span>
-<span class="go"><pyarrow.lib.UInt16Array object at
0x7fb2507c2c80></span>
+<span class="go"><pyarrow.lib.UInt16Array object at
0x7fa450ec17e0></span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2</span>
@@ -1710,7 +1710,7 @@ nulls:</p>
<p>Arrays can be sliced without copying:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [36]: </span><span
class="n">arr</span><span class="p">[</span><span class="mi">1</span><span
class="p">:</span><span class="mi">3</span><span class="p">]</span>
<span class="gh">Out[36]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fb2507c38e0></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7fa450fe0d60></span>
<span class="go">[</span>
<span class="go"> 2,</span>
<span class="go"> null</span>
@@ -1763,7 +1763,7 @@ This allows for ListView arrays to specify out-of-order
offsets:</p>
<span class="gp">In [45]: </span><span class="n">arr</span>
<span class="gh">Out[45]: </span>
-<span class="go"><pyarrow.lib.ListViewArray object at
0x7fb2507e84c0></span>
+<span class="go"><pyarrow.lib.ListViewArray object at
0x7fa451185480></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> 5,</span>
@@ -1788,7 +1788,7 @@ This allows for ListView arrays to specify out-of-order
offsets:</p>
dictionaries:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [46]: </span><span
class="n">pa</span><span class="o">.</span><span class="n">array</span><span
class="p">([{</span><span class="s1">'x'</span><span class="p">:</span>
<span class="mi">1</span><span class="p">,</span> <span
class="s1">'y'</span><span class="p">:</span> <span
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span
class="s1">'z& [...]
<span class="gh">Out[46]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fb2507e8880></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7fa4510d85e0></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int64</span>
<span class="go"> [</span>
@@ -1815,7 +1815,7 @@ you must explicitly pass the type:</p>
<span class="gp">In [48]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">array</span><span class="p">([{</span><span
class="s1">'x'</span><span class="p">:</span> <span
class="mi">1</span><span class="p">,</span> <span
class="s1">'y'</span><span class="p">:</span> <span
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span
class="s1">'x'</span><span class="p">:</span> <span
class="mi">2</span><span class="p">,</span [...]
<span class="gh">Out[48]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fb2507e8e80></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7fa4513e2380></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int8</span>
<span class="go"> [</span>
@@ -1830,7 +1830,7 @@ you must explicitly pass the type:</p>
<span class="gp">In [49]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">array</span><span class="p">([(</span><span
class="mi">3</span><span class="p">,</span> <span class="kc">True</span><span
class="p">),</span> <span class="p">(</span><span class="mi">4</span><span
class="p">,</span> <span class="kc">False</span><span class="p">)],</span>
<span class="nb">type</span><span class="o">=</span><span
class="n">ty</span><span class="p">)</span>
<span class="gh">Out[49]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fb2507e8fa0></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7fa4513e2080></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int8</span>
<span class="go"> [</span>
@@ -1849,7 +1849,7 @@ level and at the individual field level. If initializing
from a sequence
of Python dicts, a missing dict key is handled as a null value:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [50]: </span><span
class="n">pa</span><span class="o">.</span><span class="n">array</span><span
class="p">([{</span><span class="s1">'x'</span><span class="p">:</span>
<span class="mi">1</span><span class="p">},</span> <span
class="kc">None</span><span class="p">,</span> <span class="p">{</span><span
class="s1">'y'</span><span class="p">:</span> <span class="kc">None</s
[...]
<span class="gh">Out[50]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fb2507e8ee0></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7fa4513e27a0></span>
<span class="go">-- is_valid:</span>
<span class="go"> [</span>
<span class="go"> true,</span>
@@ -1884,7 +1884,7 @@ individual arrays, and no copy is involved:</p>
<span class="gp">In [55]: </span><span class="n">arr</span>
<span class="gh">Out[55]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fb2507e96c0></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7fa451464880></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int16</span>
<span class="go"> [</span>
@@ -1911,7 +1911,7 @@ the type is explicitly passed into <a class="reference
internal" href="generated
<span class="gp">In [58]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">array</span><span class="p">(</span><span
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span
class="o">=</span><span class="n">ty</span><span class="p">)</span>
<span class="gh">Out[58]: </span>
-<span class="go"><pyarrow.lib.MapArray object at 0x7fb2507e9c00></span>
+<span class="go"><pyarrow.lib.MapArray object at 0x7fa4515a8340></span>
<span class="go">[</span>
<span class="go"> keys:</span>
<span class="go"> [</span>
@@ -1945,7 +1945,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [60]: </span><span class="n">arr</span><span
class="o">.</span><span class="n">keys</span>
<span class="gh">Out[60]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fb2507e97e0></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7fa45153fd60></span>
<span class="go">[</span>
<span class="go"> "x",</span>
<span class="go"> "y",</span>
@@ -1954,7 +1954,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [61]: </span><span class="n">arr</span><span
class="o">.</span><span class="n">items</span>
<span class="gh">Out[61]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fb2507ea020></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7fa4511dffa0></span>
<span class="go">[</span>
<span class="go"> 4,</span>
<span class="go"> 5,</span>
@@ -1963,7 +1963,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [62]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span
class="n">from_arrays</span><span class="p">(</span><span
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span
class="n">keys</span><span class="p">)</span>
<span class="gh">Out[62]: </span>
-<span class="go"><pyarrow.lib.ListArray object at 0x7fb2507ea260></span>
+<span class="go"><pyarrow.lib.ListArray object at 0x7fa4516c9900></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> "x",</span>
@@ -1976,7 +1976,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [63]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span
class="n">from_arrays</span><span class="p">(</span><span
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span
class="n">items</span><span class="p">)</span>
<span class="gh">Out[63]: </span>
-<span class="go"><pyarrow.lib.ListArray object at 0x7fb2507ea1a0></span>
+<span class="go"><pyarrow.lib.ListArray object at 0x7fa4516cbfa0></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> 4,</span>
@@ -2011,7 +2011,7 @@ selected:</p>
<span class="gp">In [69]: </span><span class="n">union_arr</span>
<span class="gh">Out[69]: </span>
-<span class="go"><pyarrow.lib.UnionArray object at 0x7fb2507ea560></span>
+<span class="go"><pyarrow.lib.UnionArray object at 0x7fa4518e9d20></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- type_ids: [</span>
<span class="go"> 0,</span>
@@ -2050,7 +2050,7 @@ each offset in the selected child array it can be
found:</p>
<span class="gp">In [76]: </span><span class="n">union_arr</span>
<span class="gh">Out[76]: </span>
-<span class="go"><pyarrow.lib.UnionArray object at 0x7fb2507eae60></span>
+<span class="go"><pyarrow.lib.UnionArray object at 0x7fa4519e9a80></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- type_ids: [</span>
<span class="go"> 0,</span>
@@ -2099,7 +2099,7 @@ consider an example:</p>
<span class="gp">In [80]: </span><span class="n">dict_array</span>
<span class="gh">Out[80]: </span>
-<span class="go"><pyarrow.lib.DictionaryArray object at
0x7fb252d55540></span>
+<span class="go"><pyarrow.lib.DictionaryArray object at
0x7fa4519c0ba0></span>
<span class="go">-- dictionary:</span>
<span class="go"> [</span>
@@ -2126,7 +2126,7 @@ consider an example:</p>
<span class="gp">In [82]: </span><span class="n">dict_array</span><span
class="o">.</span><span class="n">indices</span>
<span class="gh">Out[82]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fb2507eb700></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7fa45192ff40></span>
<span class="go">[</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
@@ -2140,7 +2140,7 @@ consider an example:</p>
<span class="gp">In [83]: </span><span class="n">dict_array</span><span
class="o">.</span><span class="n">dictionary</span>
<span class="gh">Out[83]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fb2507eb820></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7fa45192fbe0></span>
<span class="go">[</span>
<span class="go"> "foo",</span>
<span class="go"> "bar",</span>
@@ -2196,7 +2196,7 @@ instances. Let’s consider a collection of arrays:</p>
<span class="gp">In [90]: </span><span class="n">batch</span><span
class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gh">Out[90]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fb2507f82e0></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7fa451ac57e0></span>
<span class="go">[</span>
<span class="go"> "foo",</span>
<span class="go"> "bar",</span>
@@ -2210,7 +2210,7 @@ instances. Let’s consider a collection of arrays:</p>
<span class="gp">In [92]: </span><span class="n">batch2</span><span
class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gh">Out[92]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fb2507f85e0></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7fa451ac7ca0></span>
<span class="go">[</span>
<span class="go"> "bar",</span>
<span class="go"> "baz",</span>
@@ -2254,7 +2254,7 @@ container for one or more arrays of the same type.</p>
<span class="gp">In [98]: </span><span class="n">c</span>
<span class="gh">Out[98]: </span>
-<span class="go"><pyarrow.lib.ChunkedArray object at
0x7fb2507f8820></span>
+<span class="go"><pyarrow.lib.ChunkedArray object at
0x7fa451ac6500></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
@@ -2288,7 +2288,7 @@ container for one or more arrays of the same type.</p>
<span class="gp">In [100]: </span><span class="n">c</span><span
class="o">.</span><span class="n">chunk</span><span class="p">(</span><span
class="mi">0</span><span class="p">)</span>
<span class="gh">Out[100]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fb2507c0be0></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7fa451ac5f00></span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
diff --git a/docs/dev/python/dataset.html b/docs/dev/python/dataset.html
index f8351fa6893..23fc9311a40 100644
--- a/docs/dev/python/dataset.html
+++ b/docs/dev/python/dataset.html
@@ -1549,7 +1549,7 @@ can pass it the path to the directory containing the data
files:</p>
<span class="gp">In [12]: </span><span class="n">dataset</span> <span
class="o">=</span> <span class="n">ds</span><span class="o">.</span><span
class="n">dataset</span><span class="p">(</span><span class="n">base</span>
<span class="o">/</span> <span
class="s2">"parquet_dataset"</span><span class="p">,</span> <span
class="nb">format</span><span class="o">=</span><span
class="s2">"parquet"</span><span class="p">)</span>
<span class="gp">In [13]: </span><span class="n">dataset</span>
-<span class="gh">Out[13]: </span><span
class="go"><pyarrow._dataset.FileSystemDataset at 0x7fb25060f160></span>
+<span class="gh">Out[13]: </span><span
class="go"><pyarrow._dataset.FileSystemDataset at 0x7fa451c91d80></span>
</pre></div>
</div>
<p>In addition to searching a base directory, <a class="reference internal"
href="generated/pyarrow.dataset.dataset.html#pyarrow.dataset.dataset"
title="pyarrow.dataset.dataset"><code class="xref py py-func docutils literal
notranslate"><span class="pre">dataset()</span></code></a> accepts a path to a
@@ -1558,8 +1558,8 @@ single file or a list of file paths.</p>
needed, it only crawls the directory to find all the files:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [14]: </span><span
class="n">dataset</span><span class="o">.</span><span class="n">files</span>
<span class="gh">Out[14]: </span>
-<span
class="go">['/tmp/pyarrow-eumdxihn/parquet_dataset/data1.parquet',</span>
-<span class="go">
'/tmp/pyarrow-eumdxihn/parquet_dataset/data2.parquet']</span>
+<span
class="go">['/tmp/pyarrow-ao41min3/parquet_dataset/data1.parquet',</span>
+<span class="go">
'/tmp/pyarrow-ao41min3/parquet_dataset/data2.parquet']</span>
</pre></div>
</div>
<p>… and infers the dataset’s schema (by default from the first file):</p>
@@ -1580,23 +1580,23 @@ this can require a lot of memory, see below on
filtering / iterative loading):</
<span class="go">c: int64</span>
<span class="gt">----</span>
<span class="ne">a</span>: [[0,1,2,3,4],[5,6,7,8,9]]
-<span class="ne">b</span>:
[[0.1381982272026639,-0.03477886228525355,-0.5469244572258107,-0.47631740091977043,-1.101452228129231],[-0.8175191221121333,0.2493011623345663,-0.48959030472914317,0.9922455556120368,0.8236132576126329]]
+<span class="ne">b</span>:
[[-0.39194583318632475,1.0953980583869327,1.9817566928284325,0.7943594597482709,1.0135569818485117],[0.039017000811295145,1.7257087365852366,0.016652498398630557,0.5518995066381268,-0.6898559413120323]]
<span class="ne">c</span>: [[1,2,1,2,1],[2,1,2,1,2]]
<span class="c1"># converting to pandas to see the contents of the scanned
table</span>
<span class="gp">In [17]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[17]: </span>
<span class="go"> a b c</span>
-<span class="go">0 0 0.138198 1</span>
-<span class="go">1 1 -0.034779 2</span>
-<span class="go">2 2 -0.546924 1</span>
-<span class="go">3 3 -0.476317 2</span>
-<span class="go">4 4 -1.101452 1</span>
-<span class="go">5 5 -0.817519 2</span>
-<span class="go">6 6 0.249301 1</span>
-<span class="go">7 7 -0.489590 2</span>
-<span class="go">8 8 0.992246 1</span>
-<span class="go">9 9 0.823613 2</span>
+<span class="go">0 0 -0.391946 1</span>
+<span class="go">1 1 1.095398 2</span>
+<span class="go">2 2 1.981757 1</span>
+<span class="go">3 3 0.794359 2</span>
+<span class="go">4 4 1.013557 1</span>
+<span class="go">5 5 0.039017 2</span>
+<span class="go">6 6 1.725709 1</span>
+<span class="go">7 7 0.016652 2</span>
+<span class="go">8 8 0.551900 1</span>
+<span class="go">9 9 -0.689856 2</span>
</pre></div>
</div>
</section>
@@ -1619,11 +1619,11 @@ supported; more formats are planned in the future.</p>
<span class="gp">In [21]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span
class="o">.</span><span class="n">to_pandas</span><span
class="p">()</span><span class="o">.</span><span class="n">head</span><span
class="p">()</span>
<span class="gh">Out[21]: </span>
<span class="go"> a b c</span>
-<span class="go">0 0 0.138198 1</span>
-<span class="go">1 1 -0.034779 2</span>
-<span class="go">2 2 -0.546924 1</span>
-<span class="go">3 3 -0.476317 2</span>
-<span class="go">4 4 -1.101452 1</span>
+<span class="go">0 0 -0.391946 1</span>
+<span class="go">1 1 1.095398 2</span>
+<span class="go">2 2 1.981757 1</span>
+<span class="go">3 3 0.794359 2</span>
+<span class="go">4 4 1.013557 1</span>
</pre></div>
</div>
</section>
@@ -1655,16 +1655,16 @@ supported; more formats are planned in the future.</p>
<span class="gp">In [23]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="n">columns</span><span class="o">=</span><span class="p">[</span><span
class="s1">'a'</span><span class="p">,</span> <span
class="s1">'b'</span><span class="p">])</span><span
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[23]: </span>
<span class="go"> a b</span>
-<span class="go">0 0 0.138198</span>
-<span class="go">1 1 -0.034779</span>
-<span class="go">2 2 -0.546924</span>
-<span class="go">3 3 -0.476317</span>
-<span class="go">4 4 -1.101452</span>
-<span class="go">5 5 -0.817519</span>
-<span class="go">6 6 0.249301</span>
-<span class="go">7 7 -0.489590</span>
-<span class="go">8 8 0.992246</span>
-<span class="go">9 9 0.823613</span>
+<span class="go">0 0 -0.391946</span>
+<span class="go">1 1 1.095398</span>
+<span class="go">2 2 1.981757</span>
+<span class="go">3 3 0.794359</span>
+<span class="go">4 4 1.013557</span>
+<span class="go">5 5 0.039017</span>
+<span class="go">6 6 1.725709</span>
+<span class="go">7 7 0.016652</span>
+<span class="go">8 8 0.551900</span>
+<span class="go">9 9 -0.689856</span>
</pre></div>
</div>
<p>With the <code class="docutils literal notranslate"><span
class="pre">filter</span></code> keyword, rows which do not match the filter
predicate will
@@ -1673,18 +1673,18 @@ not be included in the returned table. The keyword
expects a boolean
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [24]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s1">'a'</span><span class="p">)</span> <span
class="o">>=</span> <span class="mi">7</sp [...]
<span class="gh">Out[24]: </span>
<span class="go"> a b c</span>
-<span class="go">0 7 -0.489590 2</span>
-<span class="go">1 8 0.992246 1</span>
-<span class="go">2 9 0.823613 2</span>
+<span class="go">0 7 0.016652 2</span>
+<span class="go">1 8 0.551900 1</span>
+<span class="go">2 9 -0.689856 2</span>
<span class="gp">In [25]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s1">'c'</span><span class="p">)</span> <span class="o">==</span>
<span class="mi">2</span><span class="p">)</span><span class="o">.</span><span
class="n">to_pandas</span><spa [...]
<span class="gh">Out[25]: </span>
<span class="go"> a b c</span>
-<span class="go">0 1 -0.034779 2</span>
-<span class="go">1 3 -0.476317 2</span>
-<span class="go">2 5 -0.817519 2</span>
-<span class="go">3 7 -0.489590 2</span>
-<span class="go">4 9 0.823613 2</span>
+<span class="go">0 1 1.095398 2</span>
+<span class="go">1 3 0.794359 2</span>
+<span class="go">2 5 0.039017 2</span>
+<span class="go">3 7 0.016652 2</span>
+<span class="go">4 9 -0.689856 2</span>
</pre></div>
</div>
<p>The easiest way to construct those <a class="reference internal"
href="generated/pyarrow.dataset.Expression.html#pyarrow.dataset.Expression"
title="pyarrow.dataset.Expression"><code class="xref py py-class docutils
literal notranslate"><span class="pre">Expression</span></code></a> objects is
by using the
@@ -1729,11 +1729,11 @@ values:</p>
<span class="gp">In [30]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="n">columns</span><span class="o">=</span><span
class="n">projection</span><span class="p">)</span><span
class="o">.</span><span class="n">to_pandas</span><span
class="p">()</span><span class="o">.</span><span class="n">head</span><span
class="p">()</span>
<span class="gh">Out[30]: </span>
<span class="go"> a_renamed b_as_float32 c_1</span>
-<span class="go">0 0 0.138198 True</span>
-<span class="go">1 1 -0.034779 False</span>
-<span class="go">2 2 -0.546924 True</span>
-<span class="go">3 3 -0.476317 False</span>
-<span class="go">4 4 -1.101452 True</span>
+<span class="go">0 0 -0.391946 True</span>
+<span class="go">1 1 1.095398 False</span>
+<span class="go">2 2 1.981757 True</span>
+<span class="go">3 3 0.794359 False</span>
+<span class="go">4 4 1.013557 True</span>
</pre></div>
</div>
<p>The dictionary also determines the column selection (only the keys in the
@@ -1747,11 +1747,11 @@ build up the dictionary from the dataset schema:</p>
<span class="gp">In [33]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="n">columns</span><span class="o">=</span><span
class="n">projection</span><span class="p">)</span><span
class="o">.</span><span class="n">to_pandas</span><span
class="p">()</span><span class="o">.</span><span class="n">head</span><span
class="p">()</span>
<span class="gh">Out[33]: </span>
<span class="go"> a b c b_large</span>
-<span class="go">0 0 0.138198 1 False</span>
-<span class="go">1 1 -0.034779 2 False</span>
-<span class="go">2 2 -0.546924 1 False</span>
-<span class="go">3 3 -0.476317 2 False</span>
-<span class="go">4 4 -1.101452 1 False</span>
+<span class="go">0 0 -0.391946 1 False</span>
+<span class="go">1 1 1.095398 2 True</span>
+<span class="go">2 2 1.981757 1 True</span>
+<span class="go">3 3 0.794359 2 False</span>
+<span class="go">4 4 1.013557 1 True</span>
</pre></div>
</div>
</section>
@@ -1804,8 +1804,8 @@ should use a hive-like partitioning scheme with the <code
class="docutils litera
<span class="gp">In [37]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">files</span>
<span class="gh">Out[37]: </span>
-<span
class="go">['parquet_dataset_partitioned/part=a/be277e2fe6a440128c7c54f22aeaed82-0.parquet',</span>
-<span class="go">
'parquet_dataset_partitioned/part=b/be277e2fe6a440128c7c54f22aeaed82-0.parquet']</span>
+<span
class="go">['parquet_dataset_partitioned/part=a/6c8ac9f5f4ff4dd6a3fb9ed1e12a0c9a-0.parquet',</span>
+<span class="go">
'parquet_dataset_partitioned/part=b/6c8ac9f5f4ff4dd6a3fb9ed1e12a0c9a-0.parquet']</span>
</pre></div>
</div>
<p>Although the partition fields are not included in the actual Parquet files,
@@ -1813,9 +1813,9 @@ they will be added back to the resulting table when
scanning this dataset:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [38]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span
class="n">to_pandas</span><span class="p">()</span><span
class="o">.</span><span class="n">head</span><span class="p">(</span><span
class="mi">3</span><span class="p">)</span>
<span class="gh">Out[38]: </span>
<span class="go"> a b c part</span>
-<span class="go">0 0 0.818769 1 a</span>
-<span class="go">1 1 -0.889692 2 a</span>
-<span class="go">2 2 -0.501371 1 a</span>
+<span class="go">0 0 -0.170288 1 a</span>
+<span class="go">1 1 -1.067568 2 a</span>
+<span class="go">2 2 -1.694527 1 a</span>
</pre></div>
</div>
<p>We can now filter on the partition keys, which avoids loading files
@@ -1823,11 +1823,11 @@ altogether if they do not match the filter:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [39]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s2">"part"</span><span class="p">)</span> <span
class="o">==</span> <span class="s2">&qu [...]
<span class="gh">Out[39]: </span>
<span class="go"> a b c part</span>
-<span class="go">0 5 -1.519900 2 b</span>
-<span class="go">1 6 -1.671787 1 b</span>
-<span class="go">2 7 1.551111 2 b</span>
-<span class="go">3 8 0.179074 1 b</span>
-<span class="go">4 9 0.882806 2 b</span>
+<span class="go">0 5 -0.144041 2 b</span>
+<span class="go">1 6 -1.155322 1 b</span>
+<span class="go">2 7 -0.038221 2 b</span>
+<span class="go">3 8 0.342964 1 b</span>
+<span class="go">4 9 1.333383 2 b</span>
</pre></div>
</div>
<section id="different-partitioning-schemes">
@@ -1959,19 +1959,19 @@ is materialized as columns when reading the data and
can be used for filtering:<
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [47]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span
class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[47]: </span>
<span class="go"> year col1 col2</span>
-<span class="go">0 2018 0 2.109242</span>
-<span class="go">1 2018 1 -1.435077</span>
-<span class="go">2 2018 2 1.046727</span>
-<span class="go">3 2019 0 2.109242</span>
-<span class="go">4 2019 1 -1.435077</span>
-<span class="go">5 2019 2 1.046727</span>
+<span class="go">0 2018 0 -0.221050</span>
+<span class="go">1 2018 1 0.734815</span>
+<span class="go">2 2018 2 -1.029904</span>
+<span class="go">3 2019 0 -0.221050</span>
+<span class="go">4 2019 1 0.734815</span>
+<span class="go">5 2019 2 -1.029904</span>
<span class="gp">In [48]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s1">'year'</span><span class="p">)</span> <span
class="o">==</span> <span class="mi">2019</span><span class="p">)</span><span
class="o">.</span><span class="n">to_pandas</spa [...]
<span class="gh">Out[48]: </span>
<span class="go"> year col1 col2</span>
-<span class="go">0 2019 0 2.109242</span>
-<span class="go">1 2019 1 -1.435077</span>
-<span class="go">2 2019 2 1.046727</span>
+<span class="go">0 2019 0 -0.221050</span>
+<span class="go">1 2019 1 0.734815</span>
+<span class="go">2 2019 2 -1.029904</span>
</pre></div>
</div>
<p>Another benefit of manually listing the files is that the order of the files
@@ -2223,7 +2223,7 @@ to supply a visitor that will be called as each file is
created:</p>
<span class="gp"> ....: </span>
<span class="go">path=dataset_visited/c=1/part-0.parquet</span>
<span class="go">size=824 bytes</span>
-<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7fb25061a840></span>
+<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7fa450d16700></span>
<span class="go"> created_by: parquet-cpp-arrow version 23.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 2</span>
<span class="go"> num_rows: 5</span>
@@ -2232,7 +2232,7 @@ to supply a visitor that will be called as each file is
created:</p>
<span class="go"> serialized_size: 0</span>
<span class="go">path=dataset_visited/c=2/part-0.parquet</span>
<span class="go">size=826 bytes</span>
-<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7fb25061a840></span>
+<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7fa450d16700></span>
<span class="go"> created_by: parquet-cpp-arrow version 23.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 2</span>
<span class="go"> num_rows: 5</span>
diff --git a/docs/dev/python/getstarted.html b/docs/dev/python/getstarted.html
index 18ba189f2c7..f33b5085e7d 100644
--- a/docs/dev/python/getstarted.html
+++ b/docs/dev/python/getstarted.html
@@ -1574,7 +1574,7 @@ it’s possible to apply transformations to the data</p>
<span class="gp">In [12]: </span><span class="n">pc</span><span
class="o">.</span><span class="n">value_counts</span><span
class="p">(</span><span class="n">birthdays_table</span><span
class="p">[</span><span class="s2">"years"</span><span
class="p">])</span>
<span class="gh">Out[12]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fb2202169e0></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7fa425cb4160></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int16</span>
<span class="go"> [</span>
diff --git a/docs/dev/python/memory.html b/docs/dev/python/memory.html
index 5b74fe5b78e..5bc0cadcf20 100644
--- a/docs/dev/python/memory.html
+++ b/docs/dev/python/memory.html
@@ -1523,7 +1523,7 @@ a bytes object:</p>
<span class="gp">In [3]: </span><span class="n">buf</span> <span
class="o">=</span> <span class="n">pa</span><span class="o">.</span><span
class="n">py_buffer</span><span class="p">(</span><span
class="n">data</span><span class="p">)</span>
<span class="gp">In [4]: </span><span class="n">buf</span>
-<span class="gh">Out[4]: </span><span class="go"><pyarrow.Buffer
address=0x7fb21ecf40d0 size=26 is_cpu=True is_mutable=False></span>
+<span class="gh">Out[4]: </span><span class="go"><pyarrow.Buffer
address=0x7fa42467ce10 size=26 is_cpu=True is_mutable=False></span>
<span class="gp">In [5]: </span><span class="n">buf</span><span
class="o">.</span><span class="n">size</span>
<span class="gh">Out[5]: </span><span class="go">26</span>
@@ -1536,7 +1536,7 @@ referenced using the <a class="reference internal"
href="generated/pyarrow.forei
<p>Buffers can be used in circumstances where a Python buffer or memoryview is
required, and such conversions are zero-copy:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [6]: </span><span
class="nb">memoryview</span><span class="p">(</span><span
class="n">buf</span><span class="p">)</span>
-<span class="gh">Out[6]: </span><span class="go"><memory at
0x7fb220233880></span>
+<span class="gh">Out[6]: </span><span class="go"><memory at
0x7fa425c7f640></span>
</pre></div>
</div>
<p>The Buffer’s <a class="reference internal"
href="generated/pyarrow.Buffer.html#pyarrow.Buffer.to_pybytes"
title="pyarrow.Buffer.to_pybytes"><code class="xref py py-meth docutils literal
notranslate"><span class="pre">to_pybytes()</span></code></a> method converts
the Buffer’s data to a
@@ -1735,7 +1735,7 @@ into Arrow Buffer objects, use <code class="docutils
literal notranslate"><span
<span class="gp">In [32]: </span><span class="n">buf</span> <span
class="o">=</span> <span class="n">mmap</span><span class="o">.</span><span
class="n">read_buffer</span><span class="p">(</span><span
class="mi">4</span><span class="p">)</span>
<span class="gp">In [33]: </span><span class="nb">print</span><span
class="p">(</span><span class="n">buf</span><span class="p">)</span>
-<span class="go"><pyarrow.Buffer address=0x7fb2fbb98000 size=4 is_cpu=True
is_mutable=False></span>
+<span class="go"><pyarrow.Buffer address=0x7fa4fbe47000 size=4 is_cpu=True
is_mutable=False></span>
<span class="gp">In [34]: </span><span class="n">buf</span><span
class="o">.</span><span class="n">to_pybytes</span><span class="p">()</span>
<span class="gh">Out[34]: </span><span class="go">b'some'</span>
@@ -1757,7 +1757,7 @@ file interfaces that can read and write to Arrow
Buffers.</p>
<span class="gp">In [37]: </span><span class="n">buf</span> <span
class="o">=</span> <span class="n">writer</span><span class="o">.</span><span
class="n">getvalue</span><span class="p">()</span>
<span class="gp">In [38]: </span><span class="n">buf</span>
-<span class="gh">Out[38]: </span><span class="go"><pyarrow.Buffer
address=0x7fb2913500c0 size=14 is_cpu=True is_mutable=True></span>
+<span class="gh">Out[38]: </span><span class="go"><pyarrow.Buffer
address=0x7fa4917000c0 size=14 is_cpu=True is_mutable=True></span>
<span class="gp">In [39]: </span><span class="n">buf</span><span
class="o">.</span><span class="n">size</span>
<span class="gh">Out[39]: </span><span class="go">14</span>
diff --git a/docs/dev/python/pandas.html b/docs/dev/python/pandas.html
index 05a8456c187..a75e5c6fb40 100644
--- a/docs/dev/python/pandas.html
+++ b/docs/dev/python/pandas.html
@@ -1697,7 +1697,7 @@ same categories of the Pandas DataFrame.</p>
<span class="gp">In [10]: </span><span class="n">chunk</span><span
class="o">.</span><span class="n">dictionary</span>
<span class="gh">Out[10]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fb2de7417e0></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7fa4245e3460></span>
<span class="go">[</span>
<span class="go"> "a",</span>
<span class="go"> "b",</span>
@@ -1706,7 +1706,7 @@ same categories of the Pandas DataFrame.</p>
<span class="gp">In [11]: </span><span class="n">chunk</span><span
class="o">.</span><span class="n">indices</span>
<span class="gh">Out[11]: </span>
-<span class="go"><pyarrow.lib.Int8Array object at 0x7fb2de741e40></span>
+<span class="go"><pyarrow.lib.Int8Array object at 0x7fa4245e2920></span>
<span class="go">[</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
@@ -1832,7 +1832,7 @@ converted to an Arrow <code class="docutils literal
notranslate"><span class="pr
<span class="gp">In [33]: </span><span class="n">arr</span>
<span class="gh">Out[33]: </span>
-<span class="go"><pyarrow.lib.Time64Array object at
0x7fb2de743dc0></span>
+<span class="go"><pyarrow.lib.Time64Array object at
0x7fa425c6fa60></span>
<span class="go">[</span>
<span class="go"> 01:01:01.000000,</span>
<span class="go"> 02:02:02.000000</span>
diff --git a/docs/dev/python/parquet.html b/docs/dev/python/parquet.html
index f96853362bb..ed47804d503 100644
--- a/docs/dev/python/parquet.html
+++ b/docs/dev/python/parquet.html
@@ -1668,7 +1668,7 @@ you may choose to omit it by passing <code
class="docutils literal notranslate">
<span class="gp">In [20]: </span><span class="n">parquet_file</span><span
class="o">.</span><span class="n">metadata</span>
<span class="gh">Out[20]: </span>
-<span class="go"><pyarrow._parquet.FileMetaData object at
0x7fb2de612250></span>
+<span class="go"><pyarrow._parquet.FileMetaData object at
0x7fa4de62d8a0></span>
<span class="go"> created_by: parquet-cpp-arrow version 23.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
@@ -1678,7 +1678,7 @@ you may choose to omit it by passing <code
class="docutils literal notranslate">
<span class="gp">In [21]: </span><span class="n">parquet_file</span><span
class="o">.</span><span class="n">schema</span>
<span class="gh">Out[21]: </span>
-<span class="go"><pyarrow._parquet.ParquetSchema object at
0x7fb2de60ca00></span>
+<span class="go"><pyarrow._parquet.ParquetSchema object at
0x7fa4de620600></span>
<span class="go">required group field_id=-1 schema {</span>
<span class="go"> optional double field_id=-1 one;</span>
<span class="go"> optional binary field_id=-1 two (String);</span>
@@ -1736,7 +1736,7 @@ concatenate them into a single table. You can read
individual row groups with
<span class="gp">In [30]: </span><span class="n">metadata</span>
<span class="gh">Out[30]: </span>
-<span class="go"><pyarrow._parquet.FileMetaData object at
0x7fb2de6137e0></span>
+<span class="go"><pyarrow._parquet.FileMetaData object at
0x7fa452b0ea20></span>
<span class="go"> created_by: parquet-cpp-arrow version 23.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
@@ -1750,7 +1750,7 @@ concatenate them into a single table. You can read
individual row groups with
such as the row groups and column chunk metadata and statistics:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [31]: </span><span
class="n">metadata</span><span class="o">.</span><span
class="n">row_group</span><span class="p">(</span><span
class="mi">0</span><span class="p">)</span>
<span class="gh">Out[31]: </span>
-<span class="go"><pyarrow._parquet.RowGroupMetaData object at
0x7fb2de6440e0></span>
+<span class="go"><pyarrow._parquet.RowGroupMetaData object at
0x7fa4de60f4c0></span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
<span class="go"> total_byte_size: 290</span>
@@ -1758,7 +1758,7 @@ such as the row groups and column chunk metadata and
statistics:</p>
<span class="gp">In [32]: </span><span class="n">metadata</span><span
class="o">.</span><span class="n">row_group</span><span class="p">(</span><span
class="mi">0</span><span class="p">)</span><span class="o">.</span><span
class="n">column</span><span class="p">(</span><span class="mi">0</span><span
class="p">)</span>
<span class="gh">Out[32]: </span>
-<span class="go"><pyarrow._parquet.ColumnChunkMetaData object at
0x7fb2de644360></span>
+<span class="go"><pyarrow._parquet.ColumnChunkMetaData object at
0x7fa4de62f880></span>
<span class="go"> file_offset: 0</span>
<span class="go"> file_path: </span>
<span class="go"> physical_type: DOUBLE</span>
@@ -1766,7 +1766,7 @@ such as the row groups and column chunk metadata and
statistics:</p>
<span class="go"> path_in_schema: one</span>
<span class="go"> is_stats_set: True</span>
<span class="go"> statistics:</span>
-<span class="go"> <pyarrow._parquet.Statistics object at
0x7fb2de644400></span>
+<span class="go"> <pyarrow._parquet.Statistics object at
0x7fa4de62f8d0></span>
<span class="go"> has_min_max: True</span>
<span class="go"> min: -1.0</span>
<span class="go"> max: 2.5</span>
diff --git a/docs/dev/r/articles/data_objects.html
b/docs/dev/r/articles/data_objects.html
index 7776030c2ae..a3090c7f48d 100644
--- a/docs/dev/r/articles/data_objects.html
+++ b/docs/dev/r/articles/data_objects.html
@@ -700,9 +700,9 @@ following dplyr expression:</p>
<pre><code><span><span class="co">## <span style="color: #949494;"># A tibble:
6 x 3</span></span></span>
<span><span class="co">## id subset new_value</span></span>
<span><span class="co">## <span style="color: #949494; font-style:
italic;"><int></span> <span style="color: #949494; font-style:
italic;"><chr></span> <span style="color: #949494; font-style:
italic;"><dbl></span></span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">1</span> 2 a
26</span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">2</span> 5 a
62</span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">3</span> 6 b
115</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">1</span> 6 b
115</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">2</span> 2 a
26</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">3</span> 5 a
62</span></span>
<span><span class="co">## <span style="color: #BCBCBC;">4</span> 12 c
63</span></span>
<span><span class="co">## <span style="color: #BCBCBC;">5</span> 13 c
207</span></span>
<span><span class="co">## <span style="color: #BCBCBC;">6</span> 15 c
51</span></span></code></pre>
diff --git a/docs/dev/r/articles/data_wrangling.html
b/docs/dev/r/articles/data_wrangling.html
index 750b89d50a8..392803197a4 100644
--- a/docs/dev/r/articles/data_wrangling.html
+++ b/docs/dev/r/articles/data_wrangling.html
@@ -409,18 +409,18 @@ paying a performance penalty using the helper function
<span> <span class="co"># perform other arrow operations...</span></span>
<span> <span class="fu"><a
href="https://dplyr.tidyverse.org/reference/compute.html"
class="external-link">collect</a></span><span class="op">(</span><span
class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## <span style="color: #949494;"># A tibble:
28 x 4</span></span></span>
-<span><span class="co">## name height mass
hair_color</span></span>
-<span><span class="co">## <span style="color: #949494; font-style:
italic;"><chr></span> <span style="color: #949494; font-style:
italic;"><int></span> <span style="color: #949494; font-style:
italic;"><dbl></span> <span style="color: #949494; font-style:
italic;"><chr></span> </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> Luke
Skywalker 172 77 blond </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> Finis
Valorum 170 <span style="color: #BB0000;">NA</span> blond
</span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> R4-P17
96 <span style="color: #BB0000;">NA</span> none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> Lobot
175 79 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> Ackbar
180 83 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> Nien Nunb
160 68 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> Sebulba
112 40 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> Bib Fortuna
180 <span style="color: #BB0000;">NA</span> none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> Ayla Secura
178 55 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">10</span> Ratts Tyerel
79 15 none </span></span>
+<span><span class="co">## name height mass hair_color</span></span>
+<span><span class="co">## <span style="color: #949494; font-style:
italic;"><chr></span> <span style="color: #949494; font-style:
italic;"><int></span> <span style="color: #949494; font-style:
italic;"><dbl></span> <span style="color: #949494; font-style:
italic;"><chr></span> </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> R4-P17
96 <span style="color: #BB0000;">NA</span> none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> Lobot
175 79 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> Ackbar
180 83 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> Nien Nunb
160 68 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> Sebulba
112 40 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> Bib Fortuna
180 <span style="color: #BB0000;">NA</span> none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> Ayla Secura
178 55 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> Ratts Tyerel
79 15 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> Dud Bolt
94 45 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">10</span> Gasgano
122 <span style="color: #BB0000;">NA</span> none </span></span>
<span><span class="co">## <span style="color: #949494;"># i 18 more
rows</span></span></span></code></pre>
</div>
<div class="section level2">
diff --git a/docs/dev/r/pkgdown.yml b/docs/dev/r/pkgdown.yml
index 827bde24125..bfd1c8a7e87 100644
--- a/docs/dev/r/pkgdown.yml
+++ b/docs/dev/r/pkgdown.yml
@@ -21,7 +21,7 @@ articles:
read_write: read_write.html
developers/setup: developers/setup.html
developers/workflow: developers/workflow.html
-last_built: 2025-11-08T01:24Z
+last_built: 2025-11-09T01:29Z
urls:
reference: https://arrow.apache.org/docs/r/reference
article: https://arrow.apache.org/docs/r/articles
diff --git a/docs/dev/r/search.json b/docs/dev/r/search.json
index 725d54a530e..2a96103e77b 100644
--- a/docs/dev/r/search.json
+++ b/docs/dev/r/search.json
@@ -1 +1 @@
-[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
Checklist for CRAN Release","title":"Packaging Checklist for CRAN
Release","text":"high-level overview Arrow release process see Apache Arrow
Release Management
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
the Arrow Release Candidate Is Create [...]
+[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
Checklist for CRAN Release","title":"Packaging Checklist for CRAN
Release","text":"high-level overview Arrow release process see Apache Arrow
Release Management
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
the Arrow Release Candidate Is Create [...]
diff --git a/docs/dev/searchindex.js b/docs/dev/searchindex.js
index ec6e8257693..0a3a186635c 100644
--- a/docs/dev/searchindex.js
+++ b/docs/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles":{"1st pass":[[83,"st-pass"]],"2nd
pass":[[83,"nd-pass"]],"32-bit hash vs 64-bit
hash":[[83,"bit-hash-vs-64-bit-hash"]],"8-bit Boolean":[[126,"bit-boolean"]],"A
Database":[[9,"a-database"]],"A Library for Data
Scientists":[[9,"a-library-for-data-scientists"]],"A Note on
Linking":[[38,"a-note-on-linking"]],"A note on transactions & ACID
guarantees":[[42,"a-note-on-transactions-acid-guarantees"],[166,"a-note-on-transactions-acid-guarantees"]],"ABI
Structures":[[ [...]
\ No newline at end of file
+Search.setIndex({"alltitles":{"1st pass":[[83,"st-pass"]],"2nd
pass":[[83,"nd-pass"]],"32-bit hash vs 64-bit
hash":[[83,"bit-hash-vs-64-bit-hash"]],"8-bit Boolean":[[126,"bit-boolean"]],"A
Database":[[9,"a-database"]],"A Library for Data
Scientists":[[9,"a-library-for-data-scientists"]],"A Note on
Linking":[[38,"a-note-on-linking"]],"A note on transactions & ACID
guarantees":[[42,"a-note-on-transactions-acid-guarantees"],[166,"a-note-on-transactions-acid-guarantees"]],"ABI
Structures":[[ [...]
\ No newline at end of file