Repository: commons-numbers
Updated Branches:
  refs/heads/master 65b5d844c -> 404189559


Removed spurious file.


Project: http://git-wip-us.apache.org/repos/asf/commons-numbers/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-numbers/commit/8e0af85b
Tree: http://git-wip-us.apache.org/repos/asf/commons-numbers/tree/8e0af85b
Diff: http://git-wip-us.apache.org/repos/asf/commons-numbers/diff/8e0af85b

Branch: refs/heads/master
Commit: 8e0af85b674c00c777d5233e5cd8c4214e756e99
Parents: 65b5d84
Author: Gilles Sadowski <[email protected]>
Authored: Sat May 19 14:28:52 2018 +0200
Committer: Gilles Sadowski <[email protected]>
Committed: Sat May 19 14:28:52 2018 +0200

----------------------------------------------------------------------
 .../commons/numbers/complex/Complex.java.orig   | 1347 ------------------
 1 file changed, 1347 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/8e0af85b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
----------------------------------------------------------------------
diff --git 
a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
 
b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
deleted file mode 100644
index 3e31177..0000000
--- 
a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
+++ /dev/null
@@ -1,1347 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.commons.numbers.complex;
-
-import java.io.Serializable;
-import java.util.ArrayList;
-import java.util.List;
-import org.apache.commons.numbers.core.Precision;
-/**
- * Representation of a Complex number, i.e. a number which has both a
- * real and imaginary part.
- * <p>
- * Implementations of arithmetic operations handle {@code NaN} and
- * infinite values according to the rules for {@link java.lang.Double}, i.e.
- * {@link #equals} is an equivalence relation for all instances that have
- * a {@code NaN} in either real or imaginary part, e.g. the following are
- * considered equal:
- * <ul>
- *  <li>{@code 1 + NaNi}</li>
- *  <li>{@code NaN + i}</li>
- *  <li>{@code NaN + NaNi}</li>
- * </ul><p>
- * Note that this contradicts the IEEE-754 standard for floating
- * point numbers (according to which the test {@code x == x} must fail if
- * {@code x} is {@code NaN}). The method
- * {@link org.apache.commons.numbers.core.Precision#equals(double,double,int)
- * equals for primitive double} in class {@code Precision} conforms with
- * IEEE-754 while this class conforms with the standard behavior for Java
- * object types.</p>
- *
- */
-public class Complex implements Serializable  {
-    /** The square root of -1. A number representing "0.0 + 1.0i" */
-    public static final Complex I = new Complex(0, 1);
-    // CHECKSTYLE: stop ConstantName
-    /** A complex number representing "NaN + NaNi" */
-    public static final Complex NAN = new Complex(Double.NaN, Double.NaN);
-    // CHECKSTYLE: resume ConstantName
-    /** A complex number representing "+INF + INFi" */
-    public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, 
Double.POSITIVE_INFINITY);
-    /** A complex number representing "1.0 + 0.0i" */
-    public static final Complex ONE = new Complex(1, 0);
-    /** A complex number representing "0.0 + 0.0i" */
-    public static final Complex ZERO = new Complex(0, 0);
-
-    /** Serializable version identifier */
-    private static final long serialVersionUID = 20180201L;
-
-    /** The imaginary part. */
-    private final double imaginary;
-    /** The real part. */
-    private final double real;
-
-    /**
-     * Create a complex number given only the real part.
-     *
-     * @param real Real part.
-     */
-    public Complex(double real) {
-        this(real, 0);
-    }
-
-     /**
-     * Create a complex number given the real and imaginary parts.
-     *
-     * @param real Real part.
-     * @param imaginary Imaginary part.
-     */
-    public Complex(double real, double imaginary) {
-        this.real = real;
-        this.imaginary = imaginary;
-    }
-
-     /**
-     * Creates a Complex from its polar representation.
-     *
-     * If {@code r} is infinite and {@code theta} is finite, infinite or NaN
-     * values may be returned in parts of the result, following the rules for
-     * double arithmetic.
-     *
-     * <pre>
-     * Examples:
-     * {@code
-     * polar2Complex(INFINITY, \(\pi\)) = INFINITY + INFINITY i
-     * polar2Complex(INFINITY, 0) = INFINITY + NaN i
-     * polar2Complex(INFINITY, \(-\frac{\pi}{4}\)) = INFINITY - INFINITY i
-     * polar2Complex(INFINITY, \(5\frac{\pi}{4}\)) = -INFINITY - INFINITY i }
-     * </pre>
-     *
-     * @param r the modulus of the complex number to create
-     * @param theta the argument of the complex number to create
-     * @return {@code Complex}
-     */
-    public Complex polar(double r, double theta) {
-        checkNotNegative(r);
-        return new Complex(r * Math.cos(theta), r * Math.sin(theta));
-    }
-
-    /**
-     * For a real constructor argument x, returns a new Complex object c
-     * where {@code c = cos(x) + i sin (x)}
-     *
-     * @param x {@code double} to build the cis number
-     * @return {@code Complex}
-     */
-    public Complex cis(double x) {
-        return new Complex(Math.cos(x), Math.sin(x));
-    }
-
-    /**
-     * Returns true if either real or imaginary component of the Complex
-     * is NaN
-     *
-     * @return {@code boolean}
-     */
-    public boolean isNaN() {
-        if (Double.isNaN(real) ||
-            Double.isNaN(imaginary)) {
-            return true;
-        } else {
-            return false;
-        }
-    }
-
-    /**
-     * Returns true if either real or imaginary component of the Complex
-     * is Infinite
-     *
-     * @return {@code boolean}
-     */
-    public boolean isInfinite() {
-        if (Double.isInfinite(real) ||
-            Double.isInfinite(imaginary)) {
-            return true;
-        } else {
-            return false;
-        }
-    }
-
-    /**
-     * Returns projection of this complex number onto the Riemann sphere,
-     * i.e. all infinities (including those with an NaN component)
-     * project onto real infinity, as described in the
-     * <a 
href="http://pubs.opengroup.org/onlinepubs/9699919799/functions/cproj.html";>
-     * IEEE and ISO C standards</a>.
-     * <p>
-     *
-     *
-     * @return {@code Complex} projected onto the Riemann sphere.
-     */
-    public Complex proj() {
-        if (Double.isInfinite(real) ||
-            Double.isInfinite(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY);
-        } else {
-            return this;
-        }
-    }
-
-     /**
-     * Return the absolute value of this complex number.
-<<<<<<< HEAD
-     * This code follows the <a 
href="http://www.iso-9899.info/wiki/The_Standard";>ISO C Standard</a>, Annex G,
-     * in calculating the returned value (i.e. the hypot(x,y) method)
-     * and in handling of NaNs.
-=======
-     * Returns {@code NaN} if either real or imaginary part is {@code NaN}
-     * and {@code Double.POSITIVE_INFINITY} if neither part is {@code NaN},
-     * but at least one part is infinite.
-     * This code follows the
-     * <a href="http://www.iso-9899.info/wiki/The_Standard";>ISO C Standard</a>,
-     * Annex G, in calculating the returned value (i.e. the hypot(x,y) method).
->>>>>>> 910cd934b4dab73766954ce595cc5bb2dc79e4c8
-     *
-     * @return the absolute value.
-     */
-    public double abs() {
-        if (Math.abs(real) < Math.abs(imaginary)) {
-            final double q = real / imaginary;
-            return Math.abs(imaginary) * Math.sqrt(1 + q * q);
-        } else {
-            if (real == 0) {
-                return Math.abs(imaginary);
-            }
-            final double q = imaginary / real;
-            return Math.abs(real) * Math.sqrt(1 + q * q);
-        }
-    }
-
-    /**
-     * Return the norm of this complex number, defined as the square of the 
magnitude
-     * in the <a 
href="http://pubs.opengroup.org/onlinepubs/9699919799/functions/cproj.html";>
-     * IEEE and ISO C standards</a>.
-     *
-     * @return the norm.
-     */
-    public double norm() {
-        final double a = abs();
-        return a * a;
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is
-     * {@code (this + addend)}.
-     * Uses the definitional formula
-     * <p>
-     *   {@code (a + bi) + (c + di) = (a+c) + (b+d)i}
-     * </p>
-     *
-     * @param  addend Value to be added to this {@code Complex}.
-     * @return {@code this + addend}.
-     */
-    public Complex add(Complex addend) {
-        return new Complex(real + addend.real,
-                           imaginary + addend.imaginary);
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is {@code (this + addend)},
-     * with {@code addend} interpreted as a real number.
-     *
-     * @param addend Value to be added to this {@code Complex}.
-     * @return {@code this + addend}.
-     * @see #add(Complex)
-     */
-    public Complex add(double addend) {
-        return new Complex(real + addend, imaginary);
-    }
-
-     /**
-     * Returns the conjugate of this complex number.
-     * The conjugate of {@code a + bi} is {@code a - bi}.
-     *
-     * @return the conjugate of this complex object.
-     */
-    public Complex conjugate() {
-        return new Complex(real, -imaginary);
-    }
-
-     /**
-     * Returns the conjugate of this complex number.
-     * C++11 grammar.
-     * @return the conjugate of this complex object.
-     */
-    public Complex conj() {
-        return conjugate();
-    }
-
-
-    /**
-     * Returns a {@code Complex} whose value is
-     * {@code (this / divisor)}.
-     * Implements the definitional formula
-     * <pre>
-     *  <code>
-     *    a + bi          ac + bd + (bc - ad)i
-     *    ----------- = -------------------------
-     *    c + di         c<sup>2</sup> + d<sup>2</sup>
-     *  </code>
-     * </pre>
-     * but uses
-     * <a href="http://doi.acm.org/10.1145/1039813.1039814";>
-     * prescaling of operands</a> to limit the effects of overflows and
-     * underflows in the computation.
-     * <p>
-     * {@code Infinite} and {@code NaN} values are handled according to the
-     * following rules, applied in the order presented:
-     * <ul>
-     *  <li>If {@code divisor} equals {@link #ZERO}, {@link #NAN} is returned.
-     *  </li>
-     *  <li>If {@code this} and {@code divisor} are both infinite,
-     *   {@link #NAN} is returned.
-     *  </li>
-     *  <li>If {@code this} is finite (i.e., has no {@code Infinite} or
-     *   {@code NaN} parts) and {@code divisor} is infinite (one or both parts
-     *   infinite), {@link #ZERO} is returned.
-     *  </li>
-     *  <li>If {@code this} is infinite and {@code divisor} is finite,
-     *   {@code NaN} values are returned in the parts of the result if the
-     *   {@link java.lang.Double} rules applied to the definitional formula
-     *   force {@code NaN} results.
-     *  </li>
-     * </ul>
-     *
-     * @param divisor Value by which this {@code Complex} is to be divided.
-     * @return {@code this / divisor}.
-     */
-    public Complex divide(Complex divisor) {
-
-        final double c = divisor.real;
-        final double d = divisor.imaginary;
-        if (c == 0 &&
-            d == 0) {
-            return NAN;
-        }
-
-        if ((Double.isInfinite(c) ||
-             Double.isInfinite(d)) &&
-            (Double.isInfinite(real) ||
-             Double.isInfinite(imaginary))) {
-            return ZERO;
-        }
-
-        if (Math.abs(c) < Math.abs(d)) {
-            final double q = c / d;
-            final double denominator = c * q + d;
-            return new Complex((real * q + imaginary) / denominator,
-                               (imaginary * q - real) / denominator);
-        } else {
-            final double q = d / c;
-            final double denominator = d * q + c;
-            return new Complex((imaginary * q + real) / denominator,
-                               (imaginary - real * q) / denominator);
-        }
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is {@code (this / divisor)},
-     * with {@code divisor} interpreted as a real number.
-     *
-     * @param  divisor Value by which this {@code Complex} is to be divided.
-     * @return {@code this / divisor}.
-     * @see #divide(Complex)
-     */
-    public Complex divide(double divisor) {
-        if (divisor == 0d) {
-            return NAN;
-        }
-        if (Double.isInfinite(divisor)) {
-            return !(Double.isInfinite(real) ||
-                     Double.isInfinite(imaginary)) ? ZERO : NAN;
-        }
-        return new Complex(real / divisor,
-                           imaginary  / divisor);
-    }
-
-    /**
-     * Returns the multiplicative inverse of this instance.
-     *
-     * @return {@code 1 / this}.
-     * @see #divide(Complex)
-     */
-    public Complex reciprocal() {
-        if (Math.abs(real) < Math.abs(imaginary)) {
-            final double q = real / imaginary;
-            final double scale = 1. / (real * q + imaginary);
-            double scaleQ = 0;
-            if (q != 0 &&
-                scale != 0) {
-                scaleQ = scale * q;
-            }
-            return new Complex(scaleQ, -scale);
-        } else {
-            final double q = imaginary / real;
-            final double scale = 1. / (imaginary * q + real);
-            double scaleQ = 0;
-            if (q != 0 &&
-                scale != 0) {
-                scaleQ = scale * q;
-            }
-            return new Complex(scale, -scaleQ);
-        }
-    }
-
-    /**
-     * Test for equality with another object.
-     * If both the real and imaginary parts of two complex numbers
-     * are exactly the same, and neither is {@code Double.NaN}, the two
-     * Complex objects are considered to be equal.
-     * The behavior is the same as for JDK's {@link Double#equals(Object)
-     * Double}:
-     * <ul>
-     *  <li>All {@code NaN} values are considered to be equal,
-     *   i.e, if either (or both) real and imaginary parts of the complex
-     *   number are equal to {@code Double.NaN}, the complex number is equal
-     *   to {@code NaN}.
-     *  </li>
-     *  <li>
-     *   Instances constructed with different representations of zero (i.e.
-     *   either "0" or "-0") are <em>not</em> considered to be equal.
-     *  </li>
-     * </ul>
-     *
-     * @param other Object to test for equality with this instance.
-     * @return {@code true} if the objects are equal, {@code false} if object
-     * is {@code null}, not an instance of {@code Complex}, or not equal to
-     * this instance.
-     */
-    @Override
-    public boolean equals(Object other) {
-        if (this == other) {
-            return true;
-        }
-        if (other instanceof Complex){
-            Complex c = (Complex) other;
-            return equals(real, c.real) &&
-                equals(imaginary, c.imaginary);
-        }
-        return false;
-    }
-
-    /**
-     * Test for the floating-point equality between Complex objects.
-     * It returns {@code true} if both arguments are equal or within the
-     * range of allowed error (inclusive).
-     *
-     * @param x First value (cannot be {@code null}).
-     * @param y Second value (cannot be {@code null}).
-     * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
-     * values between the real (resp. imaginary) parts of {@code x} and
-     * {@code y}.
-     * @return {@code true} if there are fewer than {@code maxUlps} floating
-     * point values between the real (resp. imaginary) parts of {@code x}
-     * and {@code y}.
-     *
-     * @see Precision#equals(double,double,int)
-     */
-    public static boolean equals(Complex x,
-                                 Complex y,
-                                 int maxUlps) {
-        return Precision.equals(x.real, y.real, maxUlps) &&
-            Precision.equals(x.imaginary, y.imaginary, maxUlps);
-    }
-
-    /**
-     * Returns {@code true} iff the values are equal as defined by
-     * {@link #equals(Complex,Complex,int) equals(x, y, 1)}.
-     *
-     * @param x First value (cannot be {@code null}).
-     * @param y Second value (cannot be {@code null}).
-     * @return {@code true} if the values are equal.
-     */
-    public static boolean equals(Complex x,
-                                 Complex y) {
-        return equals(x, y, 1);
-    }
-
-    /**
-     * Returns {@code true} if, both for the real part and for the imaginary
-     * part, there is no double value strictly between the arguments or the
-     * difference between them is within the range of allowed error
-     * (inclusive).  Returns {@code false} if either of the arguments is NaN.
-     *
-     * @param x First value (cannot be {@code null}).
-     * @param y Second value (cannot be {@code null}).
-     * @param eps Amount of allowed absolute error.
-     * @return {@code true} if the values are two adjacent floating point
-     * numbers or they are within range of each other.
-     *
-     * @see Precision#equals(double,double,double)
-     */
-    public static boolean equals(Complex x,
-                                 Complex y,
-                                 double eps) {
-        return Precision.equals(x.real, y.real, eps) &&
-            Precision.equals(x.imaginary, y.imaginary, eps);
-    }
-
-    /**
-     * Returns {@code true} if, both for the real part and for the imaginary
-     * part, there is no double value strictly between the arguments or the
-     * relative difference between them is smaller or equal to the given
-     * tolerance. Returns {@code false} if either of the arguments is NaN.
-     *
-     * @param x First value (cannot be {@code null}).
-     * @param y Second value (cannot be {@code null}).
-     * @param eps Amount of allowed relative error.
-     * @return {@code true} if the values are two adjacent floating point
-     * numbers or they are within range of each other.
-     *
-     * @see Precision#equalsWithRelativeTolerance(double,double,double)
-     */
-    public static boolean equalsWithRelativeTolerance(Complex x, Complex y,
-                                                      double eps) {
-        return Precision.equalsWithRelativeTolerance(x.real, y.real, eps) &&
-            Precision.equalsWithRelativeTolerance(x.imaginary, y.imaginary, 
eps);
-    }
-
-    /**
-     * Get a hash code for the complex number.
-     * Any {@code Double.NaN} value in real or imaginary part produces
-     * the same hash code {@code 7}.
-     *
-     * @return a hash code value for this object.
-     */
-    @Override
-    public int hashCode() {
-        if (Double.isNaN(real) ||
-            Double.isNaN(imaginary)) {
-            return 7;
-        }
-        return 37 * (17 * hash(imaginary) + hash(real));
-    }
-
-    /**
-     * @param d Value.
-     * @return a hash code for the given value.
-     */
-    private int hash(double d) {
-        final long v = Double.doubleToLongBits(d);
-        return (int) (v ^ (v >>> 32));
-        //return new Double(d).hashCode();
-    }
-
-    /**
-     * Access the imaginary part.
-     *
-     * @return the imaginary part.
-     */
-    public double getImaginary() {
-        return imaginary;
-    }
-    /**
-     * Access the imaginary part (C++ grammar)
-     *
-     * @return the imaginary part.
-     */
-    public double imag() {
-        return imaginary;
-    }
-
-    /**
-     * Access the real part.
-     *
-     * @return the real part.
-     */
-    public double getReal() {
-        return real;
-    }
-
-     /**
-     * Access the real part (C++ grammar)
-     *
-     * @return the real part.
-     */
-    public double real() {
-        return real;
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is {@code this * factor}.
-     * Implements the definitional formula:
-     *
-     *   {@code (a + bi)(c + di) = (ac - bd) + (ad + bc)i}
-     *
-     * Returns finite values in components of the result per the definitional
-     * formula in all remaining cases.
-     *
-     * @param  factor value to be multiplied by this {@code Complex}.
-     * @return {@code this * factor}.
-     */
-    public Complex multiply(Complex factor) {
-        return new Complex(real * factor.real - imaginary * factor.imaginary,
-                           real * factor.imaginary + imaginary * factor.real);
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is {@code this * factor}, with 
{@code factor}
-     * interpreted as a integer number.
-     *
-     * @param  factor value to be multiplied by this {@code Complex}.
-     * @return {@code this * factor}.
-     * @see #multiply(Complex)
-     */
-    public Complex multiply(final int factor) {
-        return new Complex(real * factor, imaginary * factor);
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is {@code this * factor}, with 
{@code factor}
-     * interpreted as a real number.
-     *
-     * @param  factor value to be multiplied by this {@code Complex}.
-     * @return {@code this * factor}.
-     * @see #multiply(Complex)
-     */
-    public Complex multiply(double factor) {
-        return new Complex(real * factor, imaginary * factor);
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is {@code (-this)}.
-     *
-     * @return {@code -this}.
-     */
-    public Complex negate() {
-        return new Complex(-real, -imaginary);
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is
-     * {@code (this - subtrahend)}.
-     * Uses the definitional formula
-     * <p>
-     *  {@code (a + bi) - (c + di) = (a-c) + (b-d)i}
-     * </p>
-     *
-     * @param  subtrahend value to be subtracted from this {@code Complex}.
-     * @return {@code this - subtrahend}.
-     */
-    public Complex subtract(Complex subtrahend) {
-        return new Complex(real - subtrahend.real,
-                           imaginary - subtrahend.imaginary);
-    }
-
-    /**
-     * Returns a {@code Complex} whose value is
-     * {@code (this - subtrahend)}.
-     *
-     * @param  subtrahend value to be subtracted from this {@code Complex}.
-     * @return {@code this - subtrahend}.
-     * @see #subtract(Complex)
-     */
-    public Complex subtract(double subtrahend) {
-        return new Complex(real - subtrahend, imaginary);
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/InverseCosine.html";>
-     * inverse cosine</a> of this complex number.
-     * Implements the formula:
-     * <p>
-     *  {@code acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))}
-     * </p>
-     *
-     * @return the inverse cosine of this complex number.
-     */
-    public Complex acos() {
-        if (real == 0 &&
-            Double.isNaN(imaginary)) {
-            return new Complex(Math.PI * 0.5, Double.NaN);
-        } else if (neitherInfiniteNorZeroNorNaN(real) &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Math.PI * 0.5, Double.NEGATIVE_INFINITY);
-        } else if (real == Double.NEGATIVE_INFINITY &&
-                   imaginary == 1) {
-            return new Complex(Math.PI, Double.NEGATIVE_INFINITY);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == 1) {
-            return new Complex(0, Double.NEGATIVE_INFINITY);
-        } else if (real == Double.NEGATIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Math.PI * 0.75, Double.NEGATIVE_INFINITY);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Math.PI * 0.25, Double.NEGATIVE_INFINITY);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.NaN , Double.POSITIVE_INFINITY);
-        } else if (real == Double.NEGATIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.NaN, Double.NEGATIVE_INFINITY);
-        } else if (Double.isNaN(real) &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.NaN, Double.NEGATIVE_INFINITY);
-        }
-        return add(sqrt1z().multiply(I)).log().multiply(I.negate());
-    }
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/InverseSine.html";>
-     * inverse sine</a> of this complex number.
-     * <p>
-     *  {@code asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))}
-     * </p><p>
-     * @return the inverse sine of this complex number
-     */
-    public Complex asin() {
-        return sqrt1z().add(multiply(I)).log().multiply(I.negate());
-    }
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/InverseTangent.html";>
-     * inverse tangent</a> of this complex number.
-     * Implements the formula:
-     * <p>
-     * {@code atan(z) = (i/2) log((i + z)/(i - z))}
-     * </p><p>
-     * @return the inverse tangent of this complex number
-     */
-    public Complex atan() {
-        return add(I).divide(I.subtract(this)).log().multiply(I.multiply(0.5));
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/InverseHyperbolicSine.html";>
-     * inverse hyperbolic sine</a> of this complex number.
-     * Implements the formula:
-     * <p>
-     * {@code asinh(z) = log(z+sqrt(z^2+1))}
-     * </p><p>
-     * @return the inverse hyperbolic cosine of this complex number
-     */
-    public Complex asinh(){
-        if (neitherInfiniteNorZeroNorNaN(real) &&
-            imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Math.PI * 0.5);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   !Double.isInfinite(imaginary) && !Double.isNaN(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY, 0);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Math.PI * 0.25);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY,  Double.NaN);
-        } else if (Double.isNaN(real) &&
-                   imaginary == 0) {
-            return new Complex(Double.NaN, 0);
-        } else if (Double.isNaN(real) &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        }
-        return square().add(ONE).sqrt().add(this).log();
-    }
-
-   /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/InverseHyperbolicTangent.html";>
-     * inverse hyperbolic tangent</a> of this complex number.
-     * Implements the formula:
-     * <p>
-     * {@code atanh(z) = log((1+z)/(1-z))/2}
-     * </p><p>
-     * @return the inverse hyperbolic cosine of this complex number
-     */
-    public Complex atanh(){
-        if (real == 0 &&
-            Double.isNaN(imaginary)) {
-            return new Complex(0, Double.NaN);
-        } else if (neitherInfiniteNorZeroNorNaN(real) &&
-                   imaginary == 0) {
-            return new Complex(Double.POSITIVE_INFINITY, 0);
-        } else if (neitherInfiniteNorZeroNorNaN(real) &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(0, Math.PI * 0.5);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   neitherInfiniteNorZeroNorNaN(imaginary)) {
-            return new Complex(0, Math.PI * 0.5);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(0, Math.PI * 0.5);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(0, Double.NaN);
-        } else if (Double.isNaN(real) &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(0, Math.PI * 0.5);
-        }
-        return add(ONE).divide(ONE.subtract(this)).log().multiply(0.5);
-    }
-   /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/InverseHyperbolicCosine.html";>
-     * inverse hyperbolic cosine</a> of this complex number.
-     * Implements the formula:
-     * <p>
-     * {@code acosh(z) = log(z+sqrt(z^2-1))}
-     * </p><p>
-     * @return the inverse hyperbolic cosine of this complex number
-     */
-    public Complex acosh() {
-        return square().subtract(ONE).sqrt().add(this).log();
-    }
-
-    /**
-     * Compute the square of this complex number.
-     *
-     * @return square of this complex number
-     */
-    public Complex square() {
-        return multiply(this);
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/Cosine.html";>
-     * cosine</a> of this complex number.
-     * Implements the formula:
-     * <p>
-     *  {@code cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i}
-     * </p><p>
-     * where the (real) functions on the right-hand side are
-     * {@link Math#sin}, {@link Math#cos},
-     * {@link Math#cosh} and {@link Math#sinh}.
-     * </p><p>
-     *
-     * @return the cosine of this complex number.
-     */
-    public Complex cos() {
-        return new Complex(Math.cos(real) * Math.cosh(imaginary),
-                           -Math.sin(real) * Math.sinh(imaginary));
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/HyperbolicCosine.html";>
-     * hyperbolic cosine</a> of this complex number.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
-     *  </code>
-     * </pre>
-     * where the (real) functions on the right-hand side are
-     * {@link Math#sin}, {@link Math#cos},
-     * {@link Math#cosh} and {@link Math#sinh}.
-     * <p>
-     *
-     * @return the hyperbolic cosine of this complex number.
-     */
-    public Complex cosh() {
-        if (real == 0 &&
-            imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.NaN, 0);
-        } else if (real == 0 &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.NaN, 0);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == 0) {
-            return new Complex(Double.POSITIVE_INFINITY, 0);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        } else if (Double.isNaN(real) &&
-                   imaginary == 0) {
-            return new Complex(Double.NaN, 0);
-        }
-
-        return new Complex(Math.cosh(real) * Math.cos(imaginary),
-                           Math.sinh(real) * Math.sin(imaginary));
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/ExponentialFunction.html";>
-     * exponential function</a> of this complex number.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
-     *  </code>
-     * </pre>
-     * where the (real) functions on the right-hand side are
-     * {@link Math#exp}, {@link Math#cos}, and
-     * {@link Math#sin}.
-     *
-     * @return <code><i>e</i><sup>this</sup></code>.
-     */
-    public Complex exp() {
-        if (real == Double.POSITIVE_INFINITY &&
-            imaginary == 0) {
-            return new Complex(Double.POSITIVE_INFINITY, 0);
-        } else if (real == Double.NEGATIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return Complex.ZERO;
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        } else if (real == Double.NEGATIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return Complex.ZERO;
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        } else if (Double.isNaN(real) &&
-                   imaginary == 0) {
-            return new Complex(Double.NaN, 0);
-        }
-        double expReal = Math.exp(real);
-        return new Complex(expReal *  Math.cos(imaginary),
-                           expReal * Math.sin(imaginary));
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/NaturalLogarithm.html";>
-     * natural logarithm</a> of this complex number.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   log(a + bi) = ln(|a + bi|) + arg(a + bi)i
-     *  </code>
-     * </pre>
-     * where ln on the right hand side is {@link Math#log},
-     * {@code |a + bi|} is the modulus, {@link Complex#abs},  and
-     * {@code arg(a + bi) = }{@link Math#atan2}(b, a).
-     *
-     * @return the value <code>ln &nbsp; this</code>, the natural logarithm
-     * of {@code this}.
-     */
-    public Complex log() {
-        if (real == Double.POSITIVE_INFINITY &&
-            imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Math.PI * 0.25);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        } else if (Double.isNaN(real) &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        }
-        return new Complex(Math.log(abs()),
-                           Math.atan2(imaginary, real));
-    }
-
-    /**
-     * Compute the base 10 or
-     * <a href="http://mathworld.wolfram.com/CommonLogarithm.html";>
-     * common logarithm</a> of this complex number.
-     *
-     *  @return the base 10 logarithm of <code>this</code>.
-    */
-    public Complex log10() {
-        return new Complex(Math.log(abs()) / Math.log(10),
-                           Math.atan2(imaginary, real));
-    }
-
-    /**
-     * Returns of value of this complex number raised to the power of {@code 
x}.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   y<sup>x</sup> = exp(x&middot;log(y))
-     *  </code>
-     * </pre>
-     * where {@code exp} and {@code log} are {@link #exp} and
-     * {@link #log}, respectively.
-     *
-     * @param  x exponent to which this {@code Complex} is to be raised.
-     * @return <code> this<sup>x</sup></code>.
-     */
-    public Complex pow(Complex x) {
-        if (real == 0 &&
-            imaginary == 0) {
-            if (x.real > 0 &&
-                x.imaginary == 0) {
-                // 0 raised to positive number is 0
-                return ZERO;
-            } else {
-                // 0 raised to anything else is NaN
-                return NAN;
-            }
-        }
-        return log().multiply(x).exp();
-    }
-
-    /**
-     * Returns of value of this complex number raised to the power of {@code 
x}.
-     *
-     * @param  x exponent to which this {@code Complex} is to be raised.
-     * @return <code>this<sup>x</sup></code>.
-     * @see #pow(Complex)
-     */
-     public Complex pow(double x) {
-        if (real == 0 &&
-            imaginary == 0) {
-            if (x > 0) {
-                // 0 raised to positive number is 0
-                return ZERO;
-            } else {
-                // 0 raised to anything else is NaN
-                return NAN;
-            }
-        }
-        return log().multiply(x).exp();
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/Sine.html";>
-     * sine</a>
-     * of this complex number.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
-     *  </code>
-     * </pre>
-     * where the (real) functions on the right-hand side are
-     * {@link Math#sin}, {@link Math#cos},
-     * {@link Math#cosh} and {@link Math#sinh}.
-     *
-     * @return the sine of this complex number.
-     */
-    public Complex sin() {
-        return new Complex(Math.sin(real) * Math.cosh(imaginary),
-                           Math.cos(real) * Math.sinh(imaginary));
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/HyperbolicSine.html";>
-     * hyperbolic sine</a> of this complex number.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
-     *  </code>
-     * </pre>
-     * where the (real) functions on the right-hand side are
-     * {@link Math#sin}, {@link Math#cos},
-     * {@link Math#cosh} and {@link Math#sinh}.
-     *
-     * @return the hyperbolic sine of {@code this}.
-     */
-    public Complex sinh() {
-        if (real == 0 &&
-            imaginary == 0) {
-            return Complex.ZERO;
-        } else if (real == 0 &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(0, Double.NaN);
-        } else if (real == 0 &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(0, Double.NaN);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == 0) {
-            return new Complex(Double.POSITIVE_INFINITY, 0);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        } else if (Double.isNaN(real) &&
-                   imaginary == 0) {
-            return new Complex(Double.NaN, 0);
-        }
-        return new Complex(Math.sinh(real) * Math.cos(imaginary),
-                           Math.cosh(real) * Math.sin(imaginary));
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/SquareRoot.html";>
-     * square root</a> of this complex number.
-     * Implements the following algorithm to compute {@code sqrt(a + bi)}:
-     * <ol><li>Let {@code t = sqrt((|a| + |a + bi|) / 2)}</li>
-     * <li><pre>if {@code  a &#8805; 0} return {@code t + (b/2t)i}
-     *  else return {@code |b|/2t + sign(b)t i }</pre></li>
-     * </ol>
-     * where <ul>
-     * <li>{@code |a| = }{@link Math#abs}(a)</li>
-     * <li>{@code |a + bi| = }{@link Complex#abs}(a + bi)</li>
-     * <li>{@code sign(b) =  }{@link Math#copySign(double,double) copySign(1d, 
b)}
-     * </ul>
-     *
-     * @return the square root of {@code this}.
-     */
-    public Complex sqrt() {
-        if (real == 0 &&
-            imaginary == 0) {
-            return ZERO;
-        } else if (neitherInfiniteNorZeroNorNaN(real) &&
-                   imaginary == Double.POSITIVE_INFINITY) {
-            return new Complex(Double.POSITIVE_INFINITY, 
Double.POSITIVE_INFINITY);
-        } else if (real == Double.NEGATIVE_INFINITY &&
-                   neitherInfiniteNorZeroNorNaN(imaginary)) {
-            return new Complex(0, Double.NaN);
-        } else if (real == Double.NEGATIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.NaN, Double.POSITIVE_INFINITY);
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
-        }
-
-        final double t = Math.sqrt(0.5 * (Math.abs(real) + abs()));
-        if (real >= 0) {
-            return new Complex(t, 0.5 * imaginary / t);
-        } else {
-            return new Complex(0.5 * Math.abs(imaginary) / t,
-                               Math.copySign(1d, imaginary) * t);
-        }
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/SquareRoot.html";>
-     * square root</a> of <code>1 - this<sup>2</sup></code> for this complex
-     * number.
-     * Computes the result directly as
-     * {@code sqrt(ONE.subtract(z.multiply(z)))}.
-     *
-     * @return the square root of <code>1 - this<sup>2</sup></code>.
-     */
-    public Complex sqrt1z() {
-        return ONE.subtract(square()).sqrt();
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/Tangent.html";>
-     * tangent</a> of this complex number.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + 
[sinh(2b)/(cos(2a)+cosh(2b))]i
-     *  </code>
-     * </pre>
-     * where the (real) functions on the right-hand side are
-     * {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
-     * {@link Math#sinh}.
-     *
-     * @return the tangent of {@code this}.
-     */
-    public Complex tan() {
-        if (imaginary > 20) {
-            return ONE;
-        }
-        if (imaginary < -20) {
-            return new Complex(0, -1);
-        }
-
-        final double real2 = 2 * real;
-        final double imaginary2 = 2 * imaginary;
-        final double d = Math.cos(real2) + Math.cosh(imaginary2);
-
-        return new Complex(Math.sin(real2) / d,
-                           Math.sinh(imaginary2) / d);
-    }
-
-    /**
-     * Compute the
-     * <a href="http://mathworld.wolfram.com/HyperbolicTangent.html";>
-     * hyperbolic tangent</a> of this complex number.
-     * Implements the formula:
-     * <pre>
-     *  <code>
-     *   tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + 
[sin(2b)/(cosh(2a)+cos(2b))]i
-     *  </code>
-     * </pre>
-     * where the (real) functions on the right-hand side are
-     * {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
-     * {@link Math#sinh}.
-     *
-     * @return the hyperbolic tangent of {@code this}.
-     */
-    public Complex tanh() {
-        if (real == Double.POSITIVE_INFINITY &&
-            imaginary == Double.POSITIVE_INFINITY) {
-            return ONE;
-        } else if (real == Double.POSITIVE_INFINITY &&
-                   Double.isNaN(imaginary)) {
-            return ONE;
-        } else if (Double.isNaN(real) &&
-                   imaginary == 0) {
-            return new Complex(Double.NaN, 0);
-        }
-        final double real2 = 2 * real;
-        final double imaginary2 = 2 * imaginary;
-        final double d = Math.cosh(real2) + Math.cos(imaginary2);
-
-        return new Complex(Math.sinh(real2) / d,
-                           Math.sin(imaginary2) / d);
-    }
-
-   /**
-     * Compute the argument of this complex number.
-     * The argument is the angle phi between the positive real axis and
-     * the point representing this number in the complex plane.
-     * The value returned is between -PI (not inclusive)
-     * and PI (inclusive), with negative values returned for numbers with
-     * negative imaginary parts.
-     * <p>
-     * If either real or imaginary part (or both) is NaN, NaN is returned.
-     * Infinite parts are handled as {@code Math.atan2} handles them,
-     * essentially treating finite parts as zero in the presence of an
-     * infinite coordinate and returning a multiple of pi/4 depending on
-     * the signs of the infinite parts.
-     * See the javadoc for {@code Math.atan2} for full details.
-     *
-     * @return the argument of {@code this}.
-     */
-    public double getArgument() {
-        return Math.atan2(imaginary, real);
-    }
-
-    /**
-     * Compute the argument of this complex number.
-     * C++11 syntax
-     *
-     * @return the argument of {@code this}.
-     */
-    public double arg() {
-        return getArgument();
-    }
-
-    /**
-     * Computes the n-th roots of this complex number.
-     * The nth roots are defined by the formula:
-     * <pre>
-     *  <code>
-     *   z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi + 
2&pi;k/n))
-     *  </code>
-     * </pre>
-     * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi}
-     * are respectively the {@link #abs() modulus} and
-     * {@link #getArgument() argument} of this complex number.
-     * <p>
-     * If one or both parts of this complex number is NaN, a list with just
-     * one element, {@link #NAN} is returned.
-     * if neither part is NaN, but at least one part is infinite, the result
-     * is a one-element list containing {@link #INF}.
-     *
-     * @param n Degree of root.
-     * @return a List of all {@code n}-th roots of {@code this}.
-     */
-    public List<Complex> nthRoot(int n) {
-        if (n <= 0) {
-            throw new IllegalArgumentException("cannot compute nth root for 
null or negative n: {0}");
-        }
-
-        final List<Complex> result = new ArrayList<Complex>();
-
-        // nth root of abs -- faster / more accurate to use a solver here?
-        final double nthRootOfAbs = Math.pow(abs(), 1d / n);
-
-        // Compute nth roots of complex number with k = 0, 1, ... n-1
-        final double nthPhi = getArgument() / n;
-        final double slice = 2 * Math.PI / n;
-        double innerPart = nthPhi;
-        for (int k = 0; k < n ; k++) {
-            // inner part
-            final double realPart = nthRootOfAbs *  Math.cos(innerPart);
-            final double imaginaryPart = nthRootOfAbs *  Math.sin(innerPart);
-            result.add(createComplex(realPart, imaginaryPart));
-            innerPart += slice;
-        }
-
-        return result;
-    }
-
-    /**
-     * Create a complex number given the real and imaginary parts.
-     *
-     * @param realPart Real part.
-     * @param imaginaryPart Imaginary part.
-     * @return a new complex number instance.
-     * @see #valueOf(double, double)
-     */
-    protected Complex createComplex(double realPart,
-                                    double imaginaryPart) {
-        return new Complex(realPart, imaginaryPart);
-    }
-
-    /**
-     * Create a complex number given the real and imaginary parts.
-     *
-     * @param realPart Real part.
-     * @param imaginaryPart Imaginary part.
-     * @return a Complex instance.
-     */
-    public static Complex valueOf(double realPart,
-                                  double imaginaryPart) {
-        return new Complex(realPart, imaginaryPart);
-    }
-
-    /**
-     * Create a complex number given only the real part.
-     *
-     * @param realPart Real part.
-     * @return a Complex instance.
-     */
-    public static Complex valueOf(double realPart) {
-        return new Complex(realPart);
-    }
-
-    /**
-     * Resolve the transient fields in a deserialized Complex Object.
-     * Subclasses will need to override {@link #createComplex} to
-     * deserialize properly.
-     *
-     * @return A Complex instance with all fields resolved.
-     */
-    protected final Object readResolve() {
-        return new Complex(real, imaginary);
-    }
-
-    /** {@inheritDoc} */
-    @Override
-    public String toString() {
-        return "(" + real + ", " + imaginary + ")";
-    }
-
-    /**
-     * Check that the argument is positive and throw a RuntimeException
-     * if it is not.
-     * @param arg {@code double} to check
-     */
-    private static void checkNotNegative(double arg) {
-        if (arg <= 0) {
-            throw new IllegalArgumentException("Complex: Non-positive 
argument");
-        }
-    }
-
-    /**
-     * Returns {@code true} if the values are equal according to semantics of
-     * {@link Double#equals(Object)}.
-     *
-     * @param x Value
-     * @param y Value
-     * @return {@code new Double(x).equals(new Double(y))}
-     */
-    private static boolean equals(double x, double y) {
-        return new Double(x).equals(new Double(y));
-    }
-
-    /**
-     * Check that a value meets all the following conditions:
-     * <ul>
-     *  <li>it is not {@code NaN},</li>
-     *  <li>it is not infinite,</li>
-     *  <li>it is not zero,</li>
-     * </ul>
-     *
-     * @param d Value.
-     * @return {@code true} if {@code d} meets all the conditions and
-     * {@code false} otherwise.
-     */
-    private static boolean neitherInfiniteNorZeroNorNaN(double d) {
-        return !Double.isNaN(d) &&
-            !Double.isInfinite(d) &&
-            d != 0;
-    }
-}

Reply via email to