AirToSupply opened a new issue #4522:
URL: https://github.com/apache/hudi/issues/4522
**To Reproduce**
Steps to reproduce the behavior:
1. The spark engine is used to write data into the hoodie table(PS: There
are timestamp type columns in the dataset field).
2. Use the Flink engine to read the hoodie table written in step 1.
**Expected behavior**
Caused by: java.lang.IllegalArgumentException: Avro does not support
TIMESTAMP type with precision: 6, it only supports precision less than 3.
at
org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:221)
~...
at
org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:263)
~...
at
org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:169)
~...
at
org.apache.hudi.table.HoodieTableFactory.inferAvroSchema(HoodieTableFactory.java:239)
~...
at
org.apache.hudi.table.HoodieTableFactory.setupConfOptions(HoodieTableFactory.java:155)
~...
at
org.apache.hudi.table.HoodieTableFactory.createDynamicTableSource(HoodieTableFactory.java:65)
~...
**Environment Description**
* Hudi version : 0.11.0-SNAPSHOT
* Spark version : 3.1.2
* Flink version : 1.13.1
* Hive version : None
* Hadoop version : 2.9.2
* Storage (HDFS/S3/GCS..) : HDFS
* Running on Docker? (yes/no) : None
**Additional context**
We are using hoodie as a data lake to deliver projects to customers. We
found such application scenarios: write data to the hoodie table through the
spark engine, and then read data from the hoodie table through the finlk
engine.
It should be noted that the above exception will be caused by how to write
to the column containing the timestamp in the dataset.
In order to simplify the description of the problem, we summarize the
problem into the following steps:
【step-1】Mock data:
```shell
/home/deploy/spark-3.1.2-bin-hadoop2.7/bin/spark-shell \
--driver-class-path /home/workflow/apache-hive-2.3.8-bin/conf/ \
--master spark://2-120:7077 \
--executor-memory 4g \
--driver-memory 4g \
--num-executors 4 \
--total-executor-cores 4 \
--name test \
--jars
/home/deploy/spark-3.1.2-bin-hadoop2.7/jars/hudi-spark3-bundle_2.12-0.11.0-SNAPSHOT.jar,/home/deploy/spark-3.1.2-bin-hadoop2.7/jars/spark-avro_2.12-3.1.2.jar
\
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.sql.legacy.parquet.datetimeRebaseModeInRead=CORRECTED \
--conf spark.sql.hive.convertMetastoreParquet=false
```
```sql
val df = spark.sql("select 1 as id, 'A' as name, current_timestamp as dt")
df.write.format("hudi").
option("hoodie.datasource.write.recordkey.field", "id").
option("hoodie.datasource.write.precombine.field", "id").
option("hoodie.datasource.write.keygenerator.class",
"org.apache.hudi.keygen.NonpartitionedKeyGenerator").
option("hoodie.upsert.shuffle.parallelism", "2").
option("hoodie.table.name", "timestamp_table").
mode("append").
save("/hudi/suite/data_type_timestamp_table")
spark.read.format("hudi").load("/hudi/suite/data_type_timestamp_table").show(false)
```
【step-2】Consumption data through flink:
```shell
bin/sql-client.sh embedded -j lib/hudi-flink-bundle_2.12-0.11.0-SNAPSHOT.jar
```
```sql
create table data_type_timestamp_table (
`id` INT,
`name` STRING,
`dt` TIMESTAMP(6)
) with (
'connector' = 'hudi',
'hoodie.table.name' = 'data_type_timestamp_table',
'read.streaming.enabled' = 'true',
'hoodie.datasource.write.recordkey.field' = 'id',
'path' = '/hudi/suite/data_type_timestamp_table',
'read.streaming.check-interval' = '10',
'table.type' = 'COPY_ON_WRITE',
'write.precombine.field' = 'id'
);
select * from data_type_timestamp_table;
```
As shown below:

If we changge timestamp (6) to timestamp (3),the result is as follows:

The data can be found here, but the display is incorrect!
After checking It is found in the Hoodie directory that the spark write
timestamp type is timestamp micros:

However, the timestamp type of hook reading and writing Hoodie data is
timestamp-millis!Therefore, it is problematic for us to read and write
timestamp types through Spark and Flink computing engines. We hope that
hudi-flink module needs to support timestamp micros and cannot lose time
accuracy.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]