Author: tommaso
Date: Wed Jun 19 11:44:55 2013
New Revision: 1494566

URL: http://svn.apache.org/r1494566
Log:
backprop test now using 0.5M random inputs

Modified:
    
labs/yay/trunk/core/src/main/java/org/apache/yay/core/BackPropagationLearningStrategy.java
    
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java

Modified: 
labs/yay/trunk/core/src/main/java/org/apache/yay/core/BackPropagationLearningStrategy.java
URL: 
http://svn.apache.org/viewvc/labs/yay/trunk/core/src/main/java/org/apache/yay/core/BackPropagationLearningStrategy.java?rev=1494566&r1=1494565&r2=1494566&view=diff
==============================================================================
--- 
labs/yay/trunk/core/src/main/java/org/apache/yay/core/BackPropagationLearningStrategy.java
 (original)
+++ 
labs/yay/trunk/core/src/main/java/org/apache/yay/core/BackPropagationLearningStrategy.java
 Wed Jun 19 11:44:55 2013
@@ -80,7 +80,7 @@ public class BackPropagationLearningStra
         if (newCost > cost) {
           throw new RuntimeException("failed to converge at iteration " + 
iterations + " with alpha "+ alpha +" : cost going from " + cost + " to " + 
newCost);
         } else if (cost == newCost || newCost < threshold || iterations > 
MAX_ITERATIONS) {
-          System.out.println("successfully converged after " + iterations + " 
iterations with cost " + newCost + " and parameters " + 
Arrays.toString(hypothesis.getParameters()));
+          System.out.println("successfully converged with alpha " + alpha + " 
after " + iterations + " iterations with cost " + newCost + " and parameters " 
+ Arrays.toString(hypothesis.getParameters()));
           break;
         }
 

Modified: 
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java
URL: 
http://svn.apache.org/viewvc/labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java?rev=1494566&r1=1494565&r2=1494566&view=diff
==============================================================================
--- 
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java
 (original)
+++ 
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java
 Wed Jun 19 11:44:55 2013
@@ -60,10 +60,10 @@ public class BackPropagationLearningStra
   }
 
   @Test
-  public void testLearningWithRandomSamplesAndRandomWeightsAndParams() throws 
Exception {
+  public void testBigLearningWithRandomParameters() throws Exception {
     PredictionStrategy<Double, Double> predictionStrategy = new 
FeedForwardStrategy(new SigmoidFunction());
     BackPropagationLearningStrategy backPropagationLearningStrategy =
-            new BackPropagationLearningStrategy(0.1d, 0.001d, 
predictionStrategy, new LogisticRegressionCostFunction(Math.random()));
+            new BackPropagationLearningStrategy(Math.random(), 0.00001d, 
predictionStrategy, new LogisticRegressionCostFunction(Math.random()));
 
     // 3 input units, 3 hidden units, 4 hidden units, 1 output unit
     RealMatrix[] initialWeights = new RealMatrix[3];
@@ -71,7 +71,7 @@ public class BackPropagationLearningStra
     initialWeights[1] = new Array2DRowRealMatrix(new double[][]{{0d, 0d, 0d, 
0d}, {1d, Math.random(), Math.random(), Math.random()}, {1d, Math.random(), 
Math.random(), Math.random()}, {1d, Math.random(), Math.random(), 
Math.random()}});
     initialWeights[2] = new Array2DRowRealMatrix(new 
double[][]{{1d,Math.random(), Math.random(), Math.random()}});
 
-    Collection<TrainingExample<Double, Double>> samples = createSamples(50, 2);
+    Collection<TrainingExample<Double, Double>> samples = 
createSamples(500000, 2);
     TrainingSet<Double, Double> trainingSet = new TrainingSet<Double, 
Double>(samples);
     RealMatrix[] learntWeights = 
backPropagationLearningStrategy.learnWeights(initialWeights, trainingSet);
     assertNotNull(learntWeights);



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to