Author: tommaso
Date: Wed Jun 19 11:57:11 2013
New Revision: 1494572

URL: http://svn.apache.org/r1494572
Log:
added test for default settings

Modified:
    
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java

Modified: 
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java
URL: 
http://svn.apache.org/viewvc/labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java?rev=1494572&r1=1494571&r2=1494572&view=diff
==============================================================================
--- 
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java
 (original)
+++ 
labs/yay/trunk/core/src/test/java/org/apache/yay/core/BackPropagationLearningStrategyTest.java
 Wed Jun 19 11:57:11 2013
@@ -37,6 +37,27 @@ import static junit.framework.Assert.ass
  */
 public class BackPropagationLearningStrategyTest {
 
+
+  @Test
+  public void testLearningWithDefaultSettingsAndRandomSamples() throws 
Exception {
+    BackPropagationLearningStrategy backPropagationLearningStrategy = new 
BackPropagationLearningStrategy();
+
+    // 3 input units, 3 hidden units, 4 hidden units, 1 output unit
+    RealMatrix[] initialWeights = new RealMatrix[3];
+    initialWeights[0] = new Array2DRowRealMatrix(new double[][]{{0d, 0d, 0d}, 
{1d, 0.6d, 3d}, {1d, 2d, 2d}, {1d, 0.6d, 3d}});
+    initialWeights[1] = new Array2DRowRealMatrix(new double[][]{{0d, 0d, 0d, 
0d}, {1d, 0.5d, 1d, 0.5d}, {1d, 0.1d, 8d, 0.1d}, {1d, 0.1d, 8d, 0.2d}});
+    initialWeights[2] = new Array2DRowRealMatrix(new double[][]{{1d, 2d, 0.3d, 
0.5d}});
+
+    Collection<TrainingExample<Double, Double>> samples = createSamples(1000, 
2);
+    TrainingSet<Double, Double> trainingSet = new TrainingSet<Double, 
Double>(samples);
+    RealMatrix[] learntWeights = 
backPropagationLearningStrategy.learnWeights(initialWeights, trainingSet);
+    assertNotNull(learntWeights);
+
+    assertFalse(learntWeights[0].equals(initialWeights[0]));
+    assertFalse(learntWeights[1].equals(initialWeights[1]));
+    assertFalse(learntWeights[2].equals(initialWeights[2]));
+  }
+
   @Test
   public void testLearningWithRandomSamples() throws Exception {
     PredictionStrategy<Double, Double> predictionStrategy = new 
FeedForwardStrategy(new SigmoidFunction());



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to