http://git-wip-us.apache.org/repos/asf/incubator-madlib-site/blob/b5b51c69/docs/v1.11/group__grp__lmf.html
----------------------------------------------------------------------
diff --git a/docs/v1.11/group__grp__lmf.html b/docs/v1.11/group__grp__lmf.html
new file mode 100644
index 0000000..7f7d90d
--- /dev/null
+++ b/docs/v1.11/group__grp__lmf.html
@@ -0,0 +1,271 @@
+<!-- HTML header for doxygen 1.8.4-->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml";>
+<head>
+<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
+<meta http-equiv="X-UA-Compatible" content="IE=9"/>
+<meta name="generator" content="Doxygen 1.8.13"/>
+<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data 
mining,deep learning,ensemble methods,data science,market basket 
analysis,affinity analysis,pca,lda,regression,elastic net,huber 
white,proportional hazards,k-means,latent dirichlet allocation,bayes,support 
vector machines,svm"/>
+<title>MADlib: Low-rank Matrix Factorization</title>
+<link href="tabs.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="jquery.js"></script>
+<script type="text/javascript" src="dynsections.js"></script>
+<link href="navtree.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="resize.js"></script>
+<script type="text/javascript" src="navtreedata.js"></script>
+<script type="text/javascript" src="navtree.js"></script>
+<script type="text/javascript">
+  $(document).ready(initResizable);
+</script>
+<link href="search/search.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="search/searchdata.js"></script>
+<script type="text/javascript" src="search/search.js"></script>
+<script type="text/javascript">
+  $(document).ready(function() { init_search(); });
+</script>
+<!-- hack in the navigation tree -->
+<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
+<link href="doxygen.css" rel="stylesheet" type="text/css" />
+<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
+<!-- google analytics -->
+<script>
+  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+  
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+  ga('create', 'UA-45382226-1', 'madlib.incubator.apache.org');
+  ga('send', 'pageview');
+</script>
+</head>
+<body>
+<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
+<div id="titlearea">
+<table cellspacing="0" cellpadding="0">
+ <tbody>
+ <tr style="height: 56px;">
+  <td id="projectlogo"><a href="http://madlib.incubator.apache.org";><img 
alt="Logo" src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ 
></a></td>
+  <td style="padding-left: 0.5em;">
+   <div id="projectname">
+   <span id="projectnumber">1.11</span>
+   </div>
+   <div id="projectbrief">User Documentation for MADlib</div>
+  </td>
+   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
+        <span class="left">
+          <img id="MSearchSelect" src="search/mag_sel.png"
+               onmouseover="return searchBox.OnSearchSelectShow()"
+               onmouseout="return searchBox.OnSearchSelectHide()"
+               alt=""/>
+          <input type="text" id="MSearchField" value="Search" accesskey="S"
+               onfocus="searchBox.OnSearchFieldFocus(true)" 
+               onblur="searchBox.OnSearchFieldFocus(false)" 
+               onkeyup="searchBox.OnSearchFieldChange(event)"/>
+          </span><span class="right">
+            <a id="MSearchClose" 
href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" 
border="0" src="search/close.png" alt=""/></a>
+          </span>
+        </div>
+</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<!-- end header part -->
+<!-- Generated by Doxygen 1.8.13 -->
+<script type="text/javascript">
+var searchBox = new SearchBox("searchBox", "search",false,'Search');
+</script>
+</div><!-- top -->
+<div id="side-nav" class="ui-resizable side-nav-resizable">
+  <div id="nav-tree">
+    <div id="nav-tree-contents">
+      <div id="nav-sync" class="sync"></div>
+    </div>
+  </div>
+  <div id="splitbar" style="-moz-user-select:none;" 
+       class="ui-resizable-handle">
+  </div>
+</div>
+<script type="text/javascript">
+$(document).ready(function(){initNavTree('group__grp__lmf.html','');});
+</script>
+<div id="doc-content">
+<!-- window showing the filter options -->
+<div id="MSearchSelectWindow"
+     onmouseover="return searchBox.OnSearchSelectShow()"
+     onmouseout="return searchBox.OnSearchSelectHide()"
+     onkeydown="return searchBox.OnSearchSelectKey(event)">
+</div>
+
+<!-- iframe showing the search results (closed by default) -->
+<div id="MSearchResultsWindow">
+<iframe src="javascript:void(0)" frameborder="0" 
+        name="MSearchResults" id="MSearchResults">
+</iframe>
+</div>
+
+<div class="header">
+  <div class="headertitle">
+<div class="title">Low-rank Matrix Factorization<div class="ingroups"><a 
class="el" href="group__grp__datatrans.html">Data Types and Transformations</a> 
&raquo; <a class="el" href="group__grp__arraysmatrix.html">Arrays and 
Matrices</a> &raquo; <a class="el" 
href="group__grp__matrix__factorization.html">Matrix 
Factorization</a></div></div>  </div>
+</div><!--header-->
+<div class="contents">
+<div class="toc"><b>Contents</b> <ul>
+<li>
+<a href="#syntax">Function Syntax</a> </li>
+<li>
+<a href="#examples">Examples</a> </li>
+<li>
+<a href="#literature">Literature</a> </li>
+</ul>
+</div><p>This module implements "factor model" for representing an incomplete 
matrix using a low-rank approximation [1]. Mathematically, this model seeks to 
find matrices U and V (also referred as factors) that, for any given incomplete 
matrix A, minimizes:</p>
+<p class="formulaDsp">
+<img class="formulaDsp" alt="\[ \|\boldsymbol A - \boldsymbol UV^{T} \|_2 \]" 
src="form_47.png"/>
+</p>
+<p>subject to <img class="formulaInl" alt="$rank(\boldsymbol UV^{T}) \leq r$" 
src="form_48.png"/>, where <img class="formulaInl" alt="$\|\cdot\|_2$" 
src="form_49.png"/> denotes the Frobenius norm. Let <img class="formulaInl" 
alt="$A$" src="form_42.png"/> be a <img class="formulaInl" alt="$m \times n$" 
src="form_50.png"/> matrix, then <img class="formulaInl" alt="$U$" 
src="form_51.png"/> will be <img class="formulaInl" alt="$m \times r$" 
src="form_52.png"/> and <img class="formulaInl" alt="$V$" src="form_53.png"/> 
will be <img class="formulaInl" alt="$n \times r$" src="form_54.png"/>, in 
dimension, and <img class="formulaInl" alt="$1 \leq r \ll \min(m, n)$" 
src="form_55.png"/>. This model is not intended to do the full decomposition, 
or to be used as part of inverse procedure. This model has been widely used in 
recommendation systems (e.g., Netflix [2]) and feature selection (e.g., image 
processing [3]).</p>
+<p><a class="anchor" id="syntax"></a></p><dl class="section user"><dt>Function 
Syntax</dt><dd></dd></dl>
+<p>Low-rank matrix factorization of an incomplete matrix into two factors.</p>
+<pre class="syntax">
+lmf_igd_run( rel_output,
+             rel_source,
+             col_row,
+             col_column,
+             col_value,
+             row_dim,
+             column_dim,
+             max_rank,
+             stepsize,
+             scale_factor,
+             num_iterations,
+             tolerance
+           )
+</pre><p> <b>Arguments</b> </p><dl class="arglist">
+<dt>rel_output </dt>
+<dd><p class="startdd">TEXT. The name of the table to receive the output.</p>
+<p>Output factors matrix U and V are in a flattened format. </p><pre>RESULT AS 
(
+        matrix_u    DOUBLE PRECISION[],
+        matrix_v    DOUBLE PRECISION[],
+        rmse        DOUBLE PRECISION
+);</pre><p class="enddd">Features correspond to row i is 
<code>matrix_u[i:i][1:r]</code>. Features correspond to column j is 
<code>matrix_v[j:j][1:r]</code>.  </p>
+</dd>
+<dt>rel_source </dt>
+<dd><p class="startdd">TEXT. The name of the table containing the input 
data.</p>
+<p>The input matrix&gt; is expected to be of the following form: 
</p><pre>{TABLE|VIEW} <em>input_table</em> (
+    <em>row</em>    INTEGER,
+    <em>col</em>    INTEGER,
+    <em>value</em>  DOUBLE PRECISION
+)</pre><p class="enddd">Input is contained in a table that describes an 
incomplete matrix, with available entries specified as (row, column, value). 
The input matrix should be 1-based, which means row &gt;= 1, and col &gt;= 1. 
NULL values are not expected.  </p>
+</dd>
+<dt>col_row </dt>
+<dd>TEXT. The name of the column containing the row number. </dd>
+<dt>col_column </dt>
+<dd>TEXT. The name of the column containing the column number. </dd>
+<dt>col_value </dt>
+<dd>DOUBLE PRECISION. The value at (row, col). </dd>
+<dt>row_dim (optional) </dt>
+<dd>INTEGER, default: "SELECT max(col_row) FROM rel_source". The number of 
columns in the matrix. </dd>
+<dt>column_dim (optional) </dt>
+<dd>INTEGER, default: "SELECT max(col_col) FROM rel_source". The number of 
rows in the matrix. </dd>
+<dt>max_rank </dt>
+<dd>INTEGER, default: 20. The rank of desired approximation. </dd>
+<dt>stepsize (optional) </dt>
+<dd>DOUBLE PRECISION, default: 0.01. Hyper-parameter that decides how 
aggressive the gradient steps are.  </dd>
+<dt>scale_factor (optional) </dt>
+<dd>DOUBLE PRECISION, default: 0.1. Hyper-parameter that decides scale of 
initial factors. </dd>
+<dt>num_iterations (optional) </dt>
+<dd>INTEGER, default: 10. Maximum number if iterations to perform regardless 
of convergence. </dd>
+<dt>tolerance (optional) </dt>
+<dd>DOUBLE PRECISION, default: 0.0001. Acceptable level of error in 
convergence. </dd>
+</dl>
+<p><a class="anchor" id="examples"></a></p><dl class="section 
user"><dt>Examples</dt><dd></dd></dl>
+<ol type="1">
+<li>Prepare an input table/view: <pre class="example">
+DROP TABLE IF EXISTS lmf_data;
+CREATE TABLE lmf_data (
+ row INT,
+ col INT,
+ val FLOAT8
+);
+</pre></li>
+<li>Populate the input table with some data. <pre class="example">
+INSERT INTO lmf_data VALUES (1, 1, 5.0);
+INSERT INTO lmf_data VALUES (3, 100, 1.0);
+INSERT INTO lmf_data VALUES (999, 10000, 2.0);
+</pre></li>
+<li>Call the <a class="el" 
href="lmf_8sql__in.html#ac1acb1f0e1f7008118f21c83546a4602" title="Low-rank 
matrix factorization of a incomplete matrix into two factors. 
">lmf_igd_run()</a> stored procedure. <pre class="example">
+DROP TABLE IF EXISTS lmf_model;
+SELECT madlib.lmf_igd_run( 'lmf_model',
+                           'lmf_data',
+                           'row',
+                           'col',
+                           'val',
+                           999,
+                           10000,
+                           3,
+                           0.1,
+                           2,
+                           10,
+                           1e-9
+                         );
+</pre> Example result (the exact result may not be the same). <pre 
class="result">
+NOTICE:
+Finished low-rank matrix factorization using incremental gradient
+DETAIL:
+   table : lmf_data (row, col, val)
+Results:
+   RMSE = 0.0145966345300041
+Output:
+   view : SELECT * FROM lmf_model WHERE id = 1
+ lmf_igd_run
+&#160;-----------
+           1
+ (1 row)
+</pre></li>
+<li>Sanity check of the result. You may need a model id returned and also 
indicated by the function <a class="el" 
href="lmf_8sql__in.html#ac1acb1f0e1f7008118f21c83546a4602" title="Low-rank 
matrix factorization of a incomplete matrix into two factors. 
">lmf_igd_run()</a>, assuming 1 here: <pre class="example">
+SELECT array_dims(matrix_u) AS u_dims, array_dims(matrix_v) AS v_dims
+FROM lmf_model
+WHERE id = 1;
+</pre> Result: <pre class="result">
+     u_dims    |     v_dims
+ --------------+----------------
+  [1:999][1:3] | [1:10000][1:3]
+ (1 row)
+</pre></li>
+<li>Query the result value. <pre class="example">
+SELECT matrix_u[2:2][1:3] AS row_2_features
+FROM lmf_model
+WHERE id = 1;
+</pre> Example output (the exact result may not be the same): <pre 
class="result">
+                       row_2_features
+&#160;---------------------------------------------------------
+  {{1.12030523084104,0.522217971272767,0.0264869043603539}}
+ (1 row)
+</pre></li>
+<li>Make prediction of a missing entry (row=2, col=7654). <pre class="example">
+SELECT madlib.array_dot(
+    matrix_u[2:2][1:3],
+    matrix_v[7654:7654][1:3]
+    ) AS row_2_col_7654
+FROM lmf_model
+WHERE id = 1;
+</pre> Example output (the exact result may not be the same due the randomness 
of the algorithm): <pre class="result">
+   row_2_col_7654
+&#160;------------------
+  1.3201582940851
+ (1 row)
+</pre></li>
+</ol>
+<p><a class="anchor" id="literature"></a></p><dl class="section 
user"><dt>Literature</dt><dd></dd></dl>
+<p>[1] N. Srebro and T. Jaakkola. “Weighted Low-Rank Approximations.” In: 
ICML. Ed. by T. Fawcett and N. Mishra. AAAI Press, 2003, pp. 720–727. isbn: 
1-57735-189-4.</p>
+<p>[2] Simon Funk, Netflix Update: Try This at Home, December 11 2006, <a 
href="http://sifter.org/~simon/journal/20061211.html";>http://sifter.org/~simon/journal/20061211.html</a></p>
+<p>[3] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. “Robust Principal 
Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex 
Optimization.” In: NIPS. Ed. by Y. Bengio, D. Schuurmans, J. D. Lafferty, C. 
K. I. Williams, and A. Culotta. Curran Associates, Inc., 2009, pp. 2080–2088. 
isbn: 9781615679119. </p>
+</div><!-- contents -->
+</div><!-- doc-content -->
+<!-- start footer part -->
+<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
+  <ul>
+    <li class="footer">Generated on Tue May 16 2017 13:24:38 for MADlib by
+    <a href="http://www.doxygen.org/index.html";>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.13 </li>
+  </ul>
+</div>
+</body>
+</html>

http://git-wip-us.apache.org/repos/asf/incubator-madlib-site/blob/b5b51c69/docs/v1.11/group__grp__logreg.html
----------------------------------------------------------------------
diff --git a/docs/v1.11/group__grp__logreg.html 
b/docs/v1.11/group__grp__logreg.html
new file mode 100644
index 0000000..d1549fb
--- /dev/null
+++ b/docs/v1.11/group__grp__logreg.html
@@ -0,0 +1,418 @@
+<!-- HTML header for doxygen 1.8.4-->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml";>
+<head>
+<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
+<meta http-equiv="X-UA-Compatible" content="IE=9"/>
+<meta name="generator" content="Doxygen 1.8.13"/>
+<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data 
mining,deep learning,ensemble methods,data science,market basket 
analysis,affinity analysis,pca,lda,regression,elastic net,huber 
white,proportional hazards,k-means,latent dirichlet allocation,bayes,support 
vector machines,svm"/>
+<title>MADlib: Logistic Regression</title>
+<link href="tabs.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="jquery.js"></script>
+<script type="text/javascript" src="dynsections.js"></script>
+<link href="navtree.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="resize.js"></script>
+<script type="text/javascript" src="navtreedata.js"></script>
+<script type="text/javascript" src="navtree.js"></script>
+<script type="text/javascript">
+  $(document).ready(initResizable);
+</script>
+<link href="search/search.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="search/searchdata.js"></script>
+<script type="text/javascript" src="search/search.js"></script>
+<script type="text/javascript">
+  $(document).ready(function() { init_search(); });
+</script>
+<!-- hack in the navigation tree -->
+<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
+<link href="doxygen.css" rel="stylesheet" type="text/css" />
+<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
+<!-- google analytics -->
+<script>
+  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+  
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+  ga('create', 'UA-45382226-1', 'madlib.incubator.apache.org');
+  ga('send', 'pageview');
+</script>
+</head>
+<body>
+<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
+<div id="titlearea">
+<table cellspacing="0" cellpadding="0">
+ <tbody>
+ <tr style="height: 56px;">
+  <td id="projectlogo"><a href="http://madlib.incubator.apache.org";><img 
alt="Logo" src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ 
></a></td>
+  <td style="padding-left: 0.5em;">
+   <div id="projectname">
+   <span id="projectnumber">1.11</span>
+   </div>
+   <div id="projectbrief">User Documentation for MADlib</div>
+  </td>
+   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
+        <span class="left">
+          <img id="MSearchSelect" src="search/mag_sel.png"
+               onmouseover="return searchBox.OnSearchSelectShow()"
+               onmouseout="return searchBox.OnSearchSelectHide()"
+               alt=""/>
+          <input type="text" id="MSearchField" value="Search" accesskey="S"
+               onfocus="searchBox.OnSearchFieldFocus(true)" 
+               onblur="searchBox.OnSearchFieldFocus(false)" 
+               onkeyup="searchBox.OnSearchFieldChange(event)"/>
+          </span><span class="right">
+            <a id="MSearchClose" 
href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" 
border="0" src="search/close.png" alt=""/></a>
+          </span>
+        </div>
+</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<!-- end header part -->
+<!-- Generated by Doxygen 1.8.13 -->
+<script type="text/javascript">
+var searchBox = new SearchBox("searchBox", "search",false,'Search');
+</script>
+</div><!-- top -->
+<div id="side-nav" class="ui-resizable side-nav-resizable">
+  <div id="nav-tree">
+    <div id="nav-tree-contents">
+      <div id="nav-sync" class="sync"></div>
+    </div>
+  </div>
+  <div id="splitbar" style="-moz-user-select:none;" 
+       class="ui-resizable-handle">
+  </div>
+</div>
+<script type="text/javascript">
+$(document).ready(function(){initNavTree('group__grp__logreg.html','');});
+</script>
+<div id="doc-content">
+<!-- window showing the filter options -->
+<div id="MSearchSelectWindow"
+     onmouseover="return searchBox.OnSearchSelectShow()"
+     onmouseout="return searchBox.OnSearchSelectHide()"
+     onkeydown="return searchBox.OnSearchSelectKey(event)">
+</div>
+
+<!-- iframe showing the search results (closed by default) -->
+<div id="MSearchResultsWindow">
+<iframe src="javascript:void(0)" frameborder="0" 
+        name="MSearchResults" id="MSearchResults">
+</iframe>
+</div>
+
+<div class="header">
+  <div class="headertitle">
+<div class="title">Logistic Regression<div class="ingroups"><a class="el" 
href="group__grp__super.html">Supervised Learning</a> &raquo; <a class="el" 
href="group__grp__regml.html">Regression Models</a></div></div>  </div>
+</div><!--header-->
+<div class="contents">
+<div class="toc"><b>Contents</b><ul>
+<li class="level1">
+<a href="#train">Training Function</a> </li>
+<li class="level1">
+<a href="#predict">Prediction Function</a> </li>
+<li class="level1">
+<a href="#examples">Examples</a> </li>
+<li class="level1">
+<a href="#background">Technical Background</a> </li>
+<li class="level1">
+<a href="#literature">Literature</a> </li>
+<li class="level1">
+<a href="#related">Related Topics</a> </li>
+</ul>
+</div><p>Binomial logistic regression models the relationship between a 
dichotomous dependent variable and one or more predictor variables. The 
dependent variable may be a Boolean value or a categorial variable that can be 
represented with a Boolean expression. The probabilities describing the 
possible outcomes of a single trial are modeled, as a function of the predictor 
variables, using a logistic function.</p>
+<p><a class="anchor" id="train"></a></p><dl class="section user"><dt>Training 
Function</dt><dd>The logistic regression training function has the following 
format: <pre class="syntax">
+logregr_train( source_table,
+               out_table,
+               dependent_varname,
+               independent_varname,
+               grouping_cols,
+               max_iter,
+               optimizer,
+               tolerance,
+               verbose
+             )
+</pre> <b>Arguments</b> <dl class="arglist">
+<dt>source_table </dt>
+<dd><p class="startdd">TEXT. The name of the table containing the training 
data.</p>
+<p class="enddd"></p>
+</dd>
+<dt>out_table </dt>
+<dd><p class="startdd">TEXT. Name of the generated table containing the output 
model.</p>
+<p>The output table produced by the logistic regression training function 
contains the following columns:</p>
+<table class="output">
+<tr>
+<th>&lt;...&gt; </th><td><p class="starttd">Text. Grouping columns, if 
provided in input. This could be multiple columns depending on the 
<code>grouping_col</code> input. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>coef </th><td><p class="starttd">FLOAT8. Vector of the coefficients of the 
regression. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>log_likelihood </th><td><p class="starttd">FLOAT8. The log-likelihood <img 
class="formulaInl" alt="$ l(\boldsymbol c) $" src="form_80.png"/>. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>std_err </th><td><p class="starttd">FLOAT8[]. Vector of the standard error 
of the coefficients. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>z_stats </th><td><p class="starttd">FLOAT8[]. Vector of the z-statistics 
of the coefficients. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>p_values </th><td><p class="starttd">FLOAT8[]. Vector of the p-values of 
the coefficients. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>odds_ratios </th><td><p class="starttd">FLOAT8[]. The odds ratio, <img 
class="formulaInl" alt="$ \exp(c_i) $" src="form_116.png"/>. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>condition_no </th><td><p class="starttd">FLOAT8[]. The condition number of 
the <img class="formulaInl" alt="$X^{*}X$" src="form_325.png"/> matrix. A high 
condition number is usually an indication that there may be some numeric 
instability in the result yielding a less reliable model. A high condition 
number often results when there is a significant amount of colinearity in the 
underlying design matrix, in which case other regression techniques may be more 
appropriate. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_iterations </th><td>INTEGER. The number of iterations actually 
completed. This would be different from the <code>nIterations</code> argument 
if a <code>tolerance</code> parameter is provided and the algorithm converges 
before all iterations are completed.  </td></tr>
+<tr>
+<th>num_rows_processed </th><td>INTEGER. The number of rows actually 
processed, which is equal to the total number of rows in the source table minus 
the number of skipped rows.  </td></tr>
+<tr>
+<th>num_missing_rows_skipped </th><td>INTEGER. The number of rows skipped 
during the training. A row will be skipped if the independent_varname is NULL 
or contains NULL values.  </td></tr>
+</table>
+<p>A summary table named &lt;out_table&gt;_summary is also created at the same 
time, which has the following columns: </p><table class="output">
+<tr>
+<th>source_table </th><td><p class="starttd">The data source table name. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>out_table </th><td><p class="starttd">The output table name. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>dependent_varname </th><td><p class="starttd">The dependent variable. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>independent_varname </th><td><p class="starttd">The independent variables 
</p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>optimizer_params </th><td><p class="starttd">A string that contains all 
the optimizer parameters, and has the form of 'optimizer=..., max_iter=..., 
tolerance=...' </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_all_groups </th><td><p class="starttd">How many groups of data were 
fit by the logistic model. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_failed_groups </th><td><p class="starttd">How many groups' fitting 
processes failed. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_rows_processed </th><td><p class="starttd">The total number of rows 
usd in the computation. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_missing_rows_skipped </th><td>The total number of rows skipped.  
</td></tr>
+</table>
+<p class="enddd"></p>
+</dd>
+<dt>dependent_varname </dt>
+<dd><p class="startdd">TEXT. Name of the dependent variable column (of type 
BOOLEAN) in the training data or an expression evaluating to a BOOLEAN.</p>
+<p class="enddd"></p>
+</dd>
+<dt>independent_varname </dt>
+<dd><p class="startdd">TEXT. Expression list to evaluate for the independent 
variables. An intercept variable is not assumed. It is common to provide an 
explicit intercept term by including a single constant <code>1</code> term in 
the independent variable list.</p>
+<p class="enddd"></p>
+</dd>
+<dt>grouping_cols (optional) </dt>
+<dd><p class="startdd">TEXT, default: NULL. An expression list used to group 
the input dataset into discrete groups, running one regression per group. 
Similar to the SQL "GROUP BY" clause. When this value is NULL, no grouping is 
used and a single result model is generated.</p>
+<p class="enddd"></p>
+</dd>
+<dt>max_iter (optional) </dt>
+<dd><p class="startdd">INTEGER, default: 20. The maximum number of iterations 
that are allowed.</p>
+<p class="enddd"></p>
+</dd>
+<dt>optimizer (optional) </dt>
+<dd><p class="startdd">TEXT, default: 'irls'. The name of the optimizer to 
use: </p><table class="output">
+<tr>
+<th>'newton' or 'irls' </th><td>Iteratively reweighted least squares  
</td></tr>
+<tr>
+<th>'cg' </th><td>conjugate gradient  </td></tr>
+<tr>
+<th>'igd' </th><td>incremental gradient descent.  </td></tr>
+</table>
+<p class="enddd"></p>
+</dd>
+<dt>tolerance (optional) </dt>
+<dd><p class="startdd">FLOAT8, default: 0.0001. The difference between 
log-likelihood values in successive iterations that should indicate 
convergence. A zero disables the convergence criterion, so that execution stops 
after <code>n</code> iterations have completed.</p>
+<p class="enddd"></p>
+</dd>
+<dt>verbose (optional) </dt>
+<dd>BOOLEAN, default: FALSE. Provides verbose output of the results of 
training. </dd>
+</dl>
+</dd></dl>
+<dl class="section note"><dt>Note</dt><dd>For p-values, we just return the 
computation result directly. Other statistical packages, like 'R', produce the 
same result, but on printing the result to screen, another format function is 
used and any p-value that is smaller than the machine epsilon (the smallest 
positive floating-point number 'x' such that '1 + x != 1') will be printed on 
screen as "&lt; xxx" (xxx is the value of the machine epsilon). Although the 
result may look different, they are in fact the same.</dd></dl>
+<p><a class="anchor" id="predict"></a></p><dl class="section 
user"><dt>Prediction Function</dt><dd>Two prediction functions are provided to 
either predict the boolean value of the dependent variable or the probability 
of the value of dependent variable being 'True', both functions using the same 
syntax.</dd></dl>
+<p>The function to predict the boolean value (True/False) of the dependent 
variable has the following syntax: </p><pre class="syntax">
+logregr_predict(coefficients,
+                ind_var
+               )
+</pre><p>The function to predict the probability of the dependent variable 
being True has the following syntax: </p><pre class="syntax">
+logregr_predict_prob(coefficients,
+                     ind_var
+                    )
+</pre><p><b>Arguments</b> </p><dl class="arglist">
+<dt>coefficients </dt>
+<dd><p class="startdd">DOUBLE PRECISION[]. Model coefficients obtained from <a 
class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428">logregr_train()</a>.</p>
+<p class="enddd"></p>
+</dd>
+<dt>ind_var </dt>
+<dd>Independent variables, as a DOUBLE array. This should be the same length 
as the array obtained by evaluation of the 'independent_varname' argument in <a 
class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428">logregr_train()</a>.
 </dd>
+</dl>
+<p><a class="anchor" id="examples"></a></p><dl class="section 
user"><dt>Examples</dt><dd><ol type="1">
+<li>Create the training data table. <pre class="example">
+CREATE TABLE patients( id INTEGER NOT NULL,
+                       second_attack INTEGER,
+                       treatment INTEGER,
+                       trait_anxiety INTEGER);
+COPY patients FROM STDIN WITH DELIMITER '|';
+  1 |             1 |         1 |            70
+  3 |             1 |         1 |            50
+  5 |             1 |         0 |            40
+  7 |             1 |         0 |            75
+  9 |             1 |         0 |            70
+ 11 |             0 |         1 |            65
+ 13 |             0 |         1 |            45
+ 15 |             0 |         1 |            40
+ 17 |             0 |         0 |            55
+ 19 |             0 |         0 |            50
+  2 |             1 |         1 |            80
+  4 |             1 |         0 |            60
+  6 |             1 |         0 |            65
+  8 |             1 |         0 |            80
+ 10 |             1 |         0 |            60
+ 12 |             0 |         1 |            50
+ 14 |             0 |         1 |            35
+ 16 |             0 |         1 |            50
+ 18 |             0 |         0 |            45
+ 20 |             0 |         0 |            60
+\.
+</pre></li>
+<li>Train a regression model. <pre class="example">
+SELECT madlib.logregr_train( 'patients',
+                             'patients_logregr',
+                             'second_attack',
+                             'ARRAY[1, treatment, trait_anxiety]',
+                             NULL,
+                             20,
+                             'irls'
+                           );
+</pre> (Note that in this example we are dynamically creating the array of 
independent variables from column names. If you have large numbers of 
independent variables beyond the PostgreSQL limit of maximum columns per table, 
you would pre-build the arrays and store them in a single column.)</li>
+<li>View the regression results. <pre class="example">
+-- Set extended display on for easier reading of output
+\x on
+SELECT * from patients_logregr;
+</pre> Result: <pre class="result">
+coef           | {5.59049410898112,2.11077546770772,-0.237276684606453}
+log_likelihood | -467.214718489873
+std_err        | {0.318943457652178,0.101518723785383,0.294509929481773}
+z_stats        | {17.5281667482197,20.7919819024719,-0.805666162169712}
+p_values       | {8.73403463417837e-69,5.11539430631541e-96,0.420435365338518}
+odds_ratios    | {267.867942976278,8.2546400100702,0.788773016471171}
+condition_no   | 179.186118573205
+num_iterations | 9
+</pre></li>
+<li>Alternatively, unnest the arrays in the results for easier reading of 
output: <pre class="example">
+\x off
+SELECT unnest(array['intercept', 'treatment', 'trait_anxiety']) as attribute,
+       unnest(coef) as coefficient,
+       unnest(std_err) as standard_error,
+       unnest(z_stats) as z_stat,
+       unnest(p_values) as pvalue,
+       unnest(odds_ratios) as odds_ratio
+    FROM patients_logregr;
+</pre></li>
+<li>Predicting dependent variable using the logistic regression model. (This 
example uses the original data table to perform the prediction. Typically a 
different test dataset with the same features as the original training dataset 
would be used for prediction.) <pre class="example">
+\x off
+-- Display prediction value along with the original value
+SELECT p.id, madlib.logregr_predict(coef, ARRAY[1, treatment, trait_anxiety]),
+       p.second_attack
+FROM patients p, patients_logregr m
+ORDER BY p.id;
+</pre></li>
+<li>Predicting the probability of the dependent variable being TRUE. <pre 
class="example">
+\x off
+-- Display prediction value along with the original value
+SELECT p.id, madlib.logregr_predict_prob(coef, ARRAY[1, treatment, 
trait_anxiety])
+FROM patients p, patients_logregr m
+ORDER BY p.id;
+</pre></li>
+</ol>
+</dd></dl>
+<p><a class="anchor" id="notes"></a></p><dl class="section 
user"><dt>Notes</dt><dd>All table names can be optionally schema qualified 
(current_schemas() would be searched if a schema name is not provided) and all 
table and column names should follow case-sensitivity and quoting rules per the 
database. (For instance, 'mytable' and 'MyTable' both resolve to the same 
entity, i.e. 'mytable'. If mixed-case or multi-byte characters are desired for 
entity names then the string should be double-quoted; in this case the input 
would be '"MyTable"').</dd></dl>
+<p><a class="anchor" id="background"></a></p><dl class="section 
user"><dt>Technical Background</dt><dd></dd></dl>
+<p>(Binomial) logistic regression refers to a stochastic model in which the 
conditional mean of the dependent dichotomous variable (usually denoted <img 
class="formulaInl" alt="$ Y \in \{ 0,1 \} $" src="form_354.png"/>) is the 
logistic function of an affine function of the vector of independent variables 
(usually denoted <img class="formulaInl" alt="$ \boldsymbol x $" 
src="form_59.png"/>). That is, </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ E[Y \mid \boldsymbol x] = \sigma(\boldsymbol 
c^T \boldsymbol x) \]" src="form_95.png"/>
+</p>
+<p> for some unknown vector of coefficients <img class="formulaInl" alt="$ 
\boldsymbol c $" src="form_79.png"/> and where <img class="formulaInl" alt="$ 
\sigma(x) = \frac{1}{1 + \exp(-x)} $" src="form_96.png"/> is the logistic 
function. Logistic regression finds the vector of coefficients <img 
class="formulaInl" alt="$ \boldsymbol c $" src="form_79.png"/> that maximizes 
the likelihood of the observations.</p>
+<p>Let</p><ul>
+<li><img class="formulaInl" alt="$ \boldsymbol y \in \{ 0,1 \}^n $" 
src="form_355.png"/> denote the vector of observed dependent variables, with 
<img class="formulaInl" alt="$ n $" src="form_11.png"/> rows, containing the 
observed values of the dependent variable,</li>
+<li><img class="formulaInl" alt="$ X \in \mathbf R^{n \times k} $" 
src="form_99.png"/> denote the design matrix with <img class="formulaInl" 
alt="$ k $" src="form_98.png"/> columns and <img class="formulaInl" alt="$ n $" 
src="form_11.png"/> rows, containing all observed vectors of independent 
variables <img class="formulaInl" alt="$ \boldsymbol x_i $" 
src="form_100.png"/> as rows.</li>
+</ul>
+<p>By definition, </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ P[Y = y_i | \boldsymbol x_i] = \sigma((-1)^{(1 
- y_i)} \cdot \boldsymbol c^T \boldsymbol x_i) \,. \]" src="form_356.png"/>
+</p>
+<p> Maximizing the likelihood <img class="formulaInl" alt="$ \prod_{i=1}^n 
\Pr(Y = y_i \mid \boldsymbol x_i) $" src="form_102.png"/> is equivalent to 
maximizing the log-likelihood <img class="formulaInl" alt="$ \sum_{i=1}^n \log 
\Pr(Y = y_i \mid \boldsymbol x_i) $" src="form_103.png"/>, which simplifies to 
</p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ l(\boldsymbol c) = -\sum_{i=1}^n \log(1 + 
\exp((-1)^{(1 - y_i)} \cdot \boldsymbol c^T \boldsymbol x_i)) \,. \]" 
src="form_357.png"/>
+</p>
+<p> The Hessian of this objective is <img class="formulaInl" alt="$ H = -X^T A 
X $" src="form_105.png"/> where <img class="formulaInl" alt="$ A = 
\text{diag}(a_1, \dots, a_n) $" src="form_106.png"/> is the diagonal matrix 
with <img class="formulaInl" alt="$ a_i = \sigma(\boldsymbol c^T \boldsymbol x) 
\cdot \sigma(-\boldsymbol c^T \boldsymbol x) \,. $" src="form_107.png"/> Since 
<img class="formulaInl" alt="$ H $" src="form_108.png"/> is non-positive 
definite, <img class="formulaInl" alt="$ l(\boldsymbol c) $" 
src="form_80.png"/> is convex. There are many techniques for solving convex 
optimization problems. Currently, logistic regression in MADlib can use one of 
three algorithms:</p><ul>
+<li>Iteratively Reweighted Least Squares</li>
+<li>A conjugate-gradient approach, also known as Fletcher-Reeves method in the 
literature, where we use the Hestenes-Stiefel rule for calculating the step 
size.</li>
+<li>Incremental gradient descent, also known as incremental gradient methods 
or stochastic gradient descent in the literature.</li>
+</ul>
+<p>We estimate the standard error for coefficient <img class="formulaInl" 
alt="$ i $" src="form_33.png"/> as </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ \mathit{se}(c_i) = \left( (X^T A X)^{-1} 
\right)_{ii} \,. \]" src="form_109.png"/>
+</p>
+<p> The Wald z-statistic is </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ z_i = \frac{c_i}{\mathit{se}(c_i)} \,. \]" 
src="form_110.png"/>
+</p>
+<p>The Wald <img class="formulaInl" alt="$ p $" src="form_111.png"/>-value for 
coefficient <img class="formulaInl" alt="$ i $" src="form_33.png"/> gives the 
probability (under the assumptions inherent in the Wald test) of seeing a value 
at least as extreme as the one observed, provided that the null hypothesis ( 
<img class="formulaInl" alt="$ c_i = 0 $" src="form_112.png"/>) is true. 
Letting <img class="formulaInl" alt="$ F $" src="form_113.png"/> denote the 
cumulative density function of a standard normal distribution, the Wald <img 
class="formulaInl" alt="$ p $" src="form_111.png"/>-value for coefficient <img 
class="formulaInl" alt="$ i $" src="form_33.png"/> is therefore </p><p 
class="formulaDsp">
+<img class="formulaDsp" alt="\[ p_i = \Pr(|Z| \geq |z_i|) = 2 \cdot (1 - F( 
|z_i| )) \]" src="form_114.png"/>
+</p>
+<p> where <img class="formulaInl" alt="$ Z $" src="form_115.png"/> is a 
standard normally distributed random variable.</p>
+<p>The odds ratio for coefficient <img class="formulaInl" alt="$ i $" 
src="form_33.png"/> is estimated as <img class="formulaInl" alt="$ \exp(c_i) $" 
src="form_116.png"/>.</p>
+<p>The condition number is computed as <img class="formulaInl" alt="$ 
\kappa(X^T A X) $" src="form_117.png"/> during the iteration immediately 
<em>preceding</em> convergence (i.e., <img class="formulaInl" alt="$ A $" 
src="form_14.png"/> is computed using the coefficients of the previous 
iteration). A large condition number (say, more than 1000) indicates the 
presence of significant multicollinearity.</p>
+<p><a class="anchor" id="literature"></a></p><dl class="section 
user"><dt>Literature</dt><dd></dd></dl>
+<p>A somewhat random selection of nice write-ups, with valuable pointers into 
further literature.</p>
+<p>[1] Cosma Shalizi: Statistics 36-350: Data Mining, Lecture Notes, 18 
November 2009, <a 
href="http://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf";>http://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf</a></p>
+<p>[2] Thomas P. Minka: A comparison of numerical optimizers for logistic 
regression, 2003 (revised Mar 26, 2007), <a 
href="http://research.microsoft.com/en-us/um/people/minka/papers/logreg/minka-logreg.pdf";>http://research.microsoft.com/en-us/um/people/minka/papers/logreg/minka-logreg.pdf</a></p>
+<p>[3] Paul Komarek, Andrew W. Moore: Making Logistic Regression A Core Data 
Mining Tool With TR-IRLS, IEEE International Conference on Data Mining 2005, 
pp. 685-688, <a 
href="http://komarix.org/ac/papers/tr-irls.short.pdf";>http://komarix.org/ac/papers/tr-irls.short.pdf</a></p>
+<p>[4] D. P. Bertsekas: Incremental gradient, subgradient, and proximal 
methods for convex optimization: a survey, Technical report, Laboratory for 
Information and Decision Systems, 2010, <a 
href="http://web.mit.edu/dimitrib/www/Incremental_Survey_LIDS.pdf";>http://web.mit.edu/dimitrib/www/Incremental_Survey_LIDS.pdf</a></p>
+<p>[5] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro: Robust stochastic 
approximation approach to stochastic programming, SIAM Journal on Optimization, 
19(4), 2009, <a 
href="http://www2.isye.gatech.edu/~nemirovs/SIOPT_RSA_2009.pdf";>http://www2.isye.gatech.edu/~nemirovs/SIOPT_RSA_2009.pdf</a></p>
+<p><a class="anchor" id="related"></a></p><dl class="section user"><dt>Related 
Topics</dt><dd></dd></dl>
+<p>File <a class="el" href="logistic_8sql__in.html" title="SQL functions for 
logistic regression. ">logistic.sql_in</a> documenting the training function</p>
+<p><a class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428" title="Compute 
logistic-regression coefficients and diagnostic statistics. 
">logregr_train()</a></p>
+<p><a class="el" 
href="elastic__net_8sql__in.html#a735038a5090c112505c740a90a203e83" 
title="Interface for elastic net. ">elastic_net_train()</a></p>
+<p><a class="el" href="group__grp__linreg.html">Linear Regression</a></p>
+<p><a class="el" href="group__grp__multinom.html">Multinomial 
Regression</a></p>
+<p><a class="el" href="group__grp__ordinal.html">Ordinal Regression</a></p>
+<p><a class="el" href="group__grp__robust.html">Robust Variance</a></p>
+<p><a class="el" href="group__grp__clustered__errors.html">Clustered 
Variance</a></p>
+<p><a class="el" href="group__grp__validation.html">Cross Validation</a></p>
+<p><a class="el" href="group__grp__marginal.html">Marginal Effects</a></p>
+</div><!-- contents -->
+</div><!-- doc-content -->
+<!-- start footer part -->
+<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
+  <ul>
+    <li class="footer">Generated on Tue May 16 2017 13:24:38 for MADlib by
+    <a href="http://www.doxygen.org/index.html";>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.13 </li>
+  </ul>
+</div>
+</body>
+</html>

http://git-wip-us.apache.org/repos/asf/incubator-madlib-site/blob/b5b51c69/docs/v1.11/group__grp__marginal.html
----------------------------------------------------------------------
diff --git a/docs/v1.11/group__grp__marginal.html 
b/docs/v1.11/group__grp__marginal.html
new file mode 100644
index 0000000..a2faca3
--- /dev/null
+++ b/docs/v1.11/group__grp__marginal.html
@@ -0,0 +1,427 @@
+<!-- HTML header for doxygen 1.8.4-->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml";>
+<head>
+<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
+<meta http-equiv="X-UA-Compatible" content="IE=9"/>
+<meta name="generator" content="Doxygen 1.8.13"/>
+<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data 
mining,deep learning,ensemble methods,data science,market basket 
analysis,affinity analysis,pca,lda,regression,elastic net,huber 
white,proportional hazards,k-means,latent dirichlet allocation,bayes,support 
vector machines,svm"/>
+<title>MADlib: Marginal Effects</title>
+<link href="tabs.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="jquery.js"></script>
+<script type="text/javascript" src="dynsections.js"></script>
+<link href="navtree.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="resize.js"></script>
+<script type="text/javascript" src="navtreedata.js"></script>
+<script type="text/javascript" src="navtree.js"></script>
+<script type="text/javascript">
+  $(document).ready(initResizable);
+</script>
+<link href="search/search.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="search/searchdata.js"></script>
+<script type="text/javascript" src="search/search.js"></script>
+<script type="text/javascript">
+  $(document).ready(function() { init_search(); });
+</script>
+<!-- hack in the navigation tree -->
+<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
+<link href="doxygen.css" rel="stylesheet" type="text/css" />
+<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
+<!-- google analytics -->
+<script>
+  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+  
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+  ga('create', 'UA-45382226-1', 'madlib.incubator.apache.org');
+  ga('send', 'pageview');
+</script>
+</head>
+<body>
+<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
+<div id="titlearea">
+<table cellspacing="0" cellpadding="0">
+ <tbody>
+ <tr style="height: 56px;">
+  <td id="projectlogo"><a href="http://madlib.incubator.apache.org";><img 
alt="Logo" src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ 
></a></td>
+  <td style="padding-left: 0.5em;">
+   <div id="projectname">
+   <span id="projectnumber">1.11</span>
+   </div>
+   <div id="projectbrief">User Documentation for MADlib</div>
+  </td>
+   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
+        <span class="left">
+          <img id="MSearchSelect" src="search/mag_sel.png"
+               onmouseover="return searchBox.OnSearchSelectShow()"
+               onmouseout="return searchBox.OnSearchSelectHide()"
+               alt=""/>
+          <input type="text" id="MSearchField" value="Search" accesskey="S"
+               onfocus="searchBox.OnSearchFieldFocus(true)" 
+               onblur="searchBox.OnSearchFieldFocus(false)" 
+               onkeyup="searchBox.OnSearchFieldChange(event)"/>
+          </span><span class="right">
+            <a id="MSearchClose" 
href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" 
border="0" src="search/close.png" alt=""/></a>
+          </span>
+        </div>
+</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<!-- end header part -->
+<!-- Generated by Doxygen 1.8.13 -->
+<script type="text/javascript">
+var searchBox = new SearchBox("searchBox", "search",false,'Search');
+</script>
+</div><!-- top -->
+<div id="side-nav" class="ui-resizable side-nav-resizable">
+  <div id="nav-tree">
+    <div id="nav-tree-contents">
+      <div id="nav-sync" class="sync"></div>
+    </div>
+  </div>
+  <div id="splitbar" style="-moz-user-select:none;" 
+       class="ui-resizable-handle">
+  </div>
+</div>
+<script type="text/javascript">
+$(document).ready(function(){initNavTree('group__grp__marginal.html','');});
+</script>
+<div id="doc-content">
+<!-- window showing the filter options -->
+<div id="MSearchSelectWindow"
+     onmouseover="return searchBox.OnSearchSelectShow()"
+     onmouseout="return searchBox.OnSearchSelectHide()"
+     onkeydown="return searchBox.OnSearchSelectKey(event)">
+</div>
+
+<!-- iframe showing the search results (closed by default) -->
+<div id="MSearchResultsWindow">
+<iframe src="javascript:void(0)" frameborder="0" 
+        name="MSearchResults" id="MSearchResults">
+</iframe>
+</div>
+
+<div class="header">
+  <div class="headertitle">
+<div class="title">Marginal Effects<div class="ingroups"><a class="el" 
href="group__grp__super.html">Supervised Learning</a> &raquo; <a class="el" 
href="group__grp__regml.html">Regression Models</a></div></div>  </div>
+</div><!--header-->
+<div class="contents">
+<div class="toc"><b>Contents</b> <ul>
+<li>
+<a href="#margins">Marginal Effects with Interaction Terms</a> </li>
+<li>
+<a href="#examples">Examples</a> </li>
+<li>
+<a href="#notes">Notes</a> </li>
+<li>
+<a href="#background">Technical Background</a> </li>
+<li>
+<a href="#literature">Literature</a> </li>
+<li>
+<a href="#related">Related Topics</a> </li>
+</ul>
+</div><p>A marginal effect (ME) or partial effect measures the effect on the 
conditional mean of <img class="formulaInl" alt="$ y $" src="form_324.png"/> 
for a change in one of the regressors, say <img class="formulaInl" alt="$X_k$" 
src="form_367.png"/>. In the linear regression model, the ME equals the 
relevant slope coefficient, greatly simplifying analysis. For nonlinear models, 
specialized algorithms are required for calculating ME. The marginal effect 
computed is the average of the marginal effect at every data point present in 
the source table.</p>
+<p>MADlib provides marginal effects regression functions for linear, logistic 
and multinomial logistic regressions.</p>
+<dl class="section warning"><dt>Warning</dt><dd>The <a class="el" 
href="marginal_8sql__in.html#a9517d679ee4209126895445cbed51fe3">margins_logregr()</a>
 and <a class="el" 
href="marginal_8sql__in.html#ae39ad0e1beca060fd153dba35901a4e7">margins_mlogregr()</a>
 functions have been deprecated in favor of the <a class="el" 
href="marginal_8sql__in.html#a36fcae5245ca31517723fce38b183c90" title="Marginal 
effects with default variable_names. ">margins()</a> function.</dd></dl>
+<p><a class="anchor" id="margins"></a></p><dl class="section 
user"><dt>Marginal Effects with Interaction Terms</dt><dd><pre class="syntax">
+margins( model_table,
+         output_table,
+         x_design,
+         source_table,
+         marginal_vars
+       )
+</pre> <b>Arguments</b> <dl class="arglist">
+<dt>model_table </dt>
+<dd>VARCHAR. The name of the model table, which is the output of <a class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428" title="Compute 
logistic-regression coefficients and diagnostic statistics. 
">logregr_train()</a> or <a class="el" 
href="multilogistic_8sql__in.html#aedc13474e6abbc88451d120ad97e44d4" 
title="Compute multinomial logistic regression coefficients. 
">mlogregr_train()</a>. </dd>
+<dt>output_table </dt>
+<dd>VARCHAR. The name of the result table. The output table has the following 
columns. <table class="output">
+<tr>
+<th>variables </th><td>INTEGER[]. The indices of the basis variables.  
</td></tr>
+<tr>
+<th>margins </th><td>DOUBLE PRECISION[]. The marginal effects.  </td></tr>
+<tr>
+<th>std_err </th><td>DOUBLE PRECISION[]. An array of the standard errors, 
computed using the delta method.  </td></tr>
+<tr>
+<th>z_stats </th><td>DOUBLE PRECISION[]. An array of the z-stats of the 
marginal effects.  </td></tr>
+<tr>
+<th>p_values </th><td>DOUBLE PRECISION[]. An array of the Wald p-values of the 
marginal effects.  </td></tr>
+</table>
+</dd>
+<dt>x_design (optional) </dt>
+<dd><p class="startdd">VARCHAR, default: NULL. The design of independent 
variables, necessary only if interaction term or indicator (categorical) terms 
are present. This parameter is necessary since the independent variables in the 
underlying regression is not parsed to extract the relationship between 
variables.</p>
+<p>Example: The <em>independent_varname</em> in the regression method can be 
specified in either of the following ways:</p><ul>
+<li><code> ‘array[1, color_blue, color_green, gender_female, gpa, gpa^2, 
gender_female*gpa, gender_female*gpa^2, weight]’ </code></li>
+<li><code> ‘x’ </code></li>
+</ul>
+<p>In the second version, the column <em>x</em> is an array containing data 
identical to that expressed in the first version, computed in a prior data 
preparation step. Supply an <em>x_design argument</em> to the <a class="el" 
href="marginal_8sql__in.html#a36fcae5245ca31517723fce38b183c90" title="Marginal 
effects with default variable_names. ">margins()</a> function in the following 
way:</p><ul>
+<li><code> ‘1, i.color_blue.color, i.color_green.color, i.gender_female, 
gpa, gpa^2, gender_female*gpa, gender_female*gpa^2, weight’</code></li>
+</ul>
+<p>The variable names (<em>'gpa', 'weight', ...</em>), referred to here as 
<em>identifiers</em>, should be unique for each basis variable and need not be 
the same as the original variable name in <em>independent_varname</em>. They 
should, however, be in the same order as the corresponding variables in 
<em>independent_varname</em>. The length of <em>x_design</em> is expected to be 
the same as the length of <em>independent_varname</em>. Each 
<em>identifier</em> name can contain only alphanumeric characters and the 
underscore.</p>
+<p>Indicator (dummy) variables are prefixed with an 'i.' (This is only 
necessary for the basis term; it is not needed in the interaction terms.) 
Indicator variables that are obtained from the same categorical variable (for 
example, 'color_blue' and 'color_green') need to have a common and unique 
suffix (for example, '.color'). The '.' is used to add the prefix and suffix. 
If a reference indicator variable is present, it should contain the prefix 
'ir.'.</p>
+<p>An identifier may contain alphanumeric characters and underscores. To 
include other characters, the string must be double-quoted. Escape-characters 
are not currently supported. </p>
+<p class="enddd"></p>
+</dd>
+<dt>source_table (optional) </dt>
+<dd><p class="startdd">VARCHAR, default: NULL. Name of the data table to apply 
marginal effects on. If not provided or NULL then the marginal effects are 
computed on the training table.</p>
+<p class="enddd"></p>
+</dd>
+<dt>marginal_vars (optional) </dt>
+<dd>VARCHAR, default: NULL. Comma-separated string containing specific 
variable identifiers to calculate marginal effects on. When NULL, marginal 
effects for all variables are returned. </dd>
+</dl>
+</dd></dl>
+<dl class="section note"><dt>Note</dt><dd>No output will be provided for the 
reference indicator variable, since the marginal effect for that variable is 
undefined. If a reference variable is included in the independent variables and 
<em>marginal_vars</em>, the <a class="el" 
href="marginal_8sql__in.html#a36fcae5245ca31517723fce38b183c90" title="Marginal 
effects with default variable_names. ">margins()</a> function will ignore that 
variable for the output. The variable can still be included in the regression 
and margins, since it will affect the values for other related indicator 
variables.</dd></dl>
+<p><a class="anchor" id="logregr_train"></a></p><dl class="section 
user"><dt>Marginal Effects for Logistic Regression</dt><dd></dd></dl>
+<dl class="section warning"><dt>Warning</dt><dd>This function has been 
deprecated in favor of the <a class="el" 
href="marginal_8sql__in.html#a36fcae5245ca31517723fce38b183c90" title="Marginal 
effects with default variable_names. ">margins()</a> function.</dd></dl>
+<pre class="syntax">
+margins_logregr( source_table,
+                 output_table,
+                 dependent_variable,
+                 independent_variable,
+                 grouping_cols,
+                 marginal_vars,
+                 max_iter,
+                 optimizer,
+                 tolerance,
+                 verbose_mode
+               )
+</pre><p> <b>Arguments</b> </p><dl class="arglist">
+<dt>source_table </dt>
+<dd>VARCHAR. The name of the data table. </dd>
+<dt>output_table </dt>
+<dd><p class="startdd">VARCHAR. The name of the result table. The output table 
has the following columns. </p><table class="output">
+<tr>
+<th>margins </th><td>DOUBLE PRECISION[]. The marginal effects.  </td></tr>
+<tr>
+<th>std_err </th><td>DOUBLE PRECISION[]. An array of the standard errors, 
using the delta method.  </td></tr>
+<tr>
+<th>z_stats </th><td>DOUBLE PRECISION[]. An array of the z-stats of the 
marginal effects.  </td></tr>
+<tr>
+<th>p_values </th><td>DOUBLE PRECISION[]. An array of the Wald p-values of the 
marginal effects.  </td></tr>
+</table>
+<p>A summary table named &lt;output_table&gt;_summary is also created, which 
is the same as the summary table created by <a class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428" title="Compute 
logistic-regression coefficients and diagnostic statistics. 
">logregr_train()</a> function. Refer to the documentation for logistic 
regression for details.</p>
+<p class="enddd"></p>
+</dd>
+<dt>dependent_variable </dt>
+<dd>VARCHAR. The name of the column for dependent variables. </dd>
+<dt>independent_variable </dt>
+<dd>VARCHAR. The name of the column for independent variables. Can be any SQL 
expression that evaluates to an array. </dd>
+<dt>grouping_cols (optional) </dt>
+<dd>VARCHAR, default: NULL. <em>Not currently implemented. Any non-NULL value 
is ignored.</em> An expression list used to group the input dataset into 
discrete groups, running one regression per group. Similar to the SQL "GROUP 
BY" clause. When this value is NULL, no grouping is used and a single result 
model is generated. </dd>
+<dt>marginal_vars (optional) </dt>
+<dd>INTEGER[], default: NULL. An index list (base 1) representing the 
independent variables to compute marginal effects on. When NULL, computes 
marginal effects on all variables. </dd>
+<dt>max_iter (optional) </dt>
+<dd>INTEGER, default: 20. The maximum number of iterations for the logistic 
regression. </dd>
+<dt>optimizer (optional) </dt>
+<dd>VARCHAR, default: 'irls'. The optimizer to use for the logistic 
regression: newton/irls, cg, or igd. </dd>
+<dt>tolerance (optional) </dt>
+<dd>DOUBLE PRECISION, default: 1e-4. Termination criterion for logistic 
regression (relative). </dd>
+<dt>verbose_mode (optional) </dt>
+<dd>BOOLEAN, default FALSE. When TRUE, provides verbose output of the results 
of training.  </dd>
+</dl>
+<p><a class="anchor" id="mlogregr_train"></a></p><dl class="section 
user"><dt>Marginal Effects for Multinomial Logistic 
Regression</dt><dd></dd></dl>
+<dl class="section warning"><dt>Warning</dt><dd>This function has been 
deprecated in favor of the <a class="el" 
href="marginal_8sql__in.html#a36fcae5245ca31517723fce38b183c90" title="Marginal 
effects with default variable_names. ">margins()</a> function.</dd></dl>
+<pre class="syntax">
+margins_mlogregr( source_table,
+                  out_table,
+                  dependent_varname,
+                  independent_varname,
+                  ref_category,
+                  grouping_cols,
+                  marginal_vars,
+                  optimizer_params,
+                  verbose_mode
+                )
+</pre><p> <b>Arguments</b> </p><dl class="arglist">
+<dt>source_table </dt>
+<dd>VARCHAR. The name of data table. </dd>
+<dt>out_table </dt>
+<dd><p class="startdd">VARCHAR. The name of result table. The output table has 
the following columns. </p><table class="output">
+<tr>
+<th>category </th><td>The category.  </td></tr>
+<tr>
+<th>ref_category </th><td>The refererence category used for modeling.  
</td></tr>
+<tr>
+<th>margins </th><td>DOUBLE PRECISION[]. The marginal effects.  </td></tr>
+<tr>
+<th>std_err </th><td>DOUBLE PRECISION[]. An array of the standard errors, 
using the delta method.  </td></tr>
+<tr>
+<th>z_stats </th><td>DOUBLE PRECISION[]. An array of the z-stats of the 
marginal effects.  </td></tr>
+<tr>
+<th>p_values </th><td>DOUBLE PRECISION[]. An array of the Wald p-values of the 
marginal effects.  </td></tr>
+</table>
+<p>A summary table named &lt;out_table&gt;_summary is also created, which is 
the same as the summary table created by <a class="el" 
href="multilogistic_8sql__in.html#aedc13474e6abbc88451d120ad97e44d4" 
title="Compute multinomial logistic regression coefficients. 
">mlogregr_train()</a> function. Refer to the documentation for multinomial 
logistic regression for details.</p>
+<p class="enddd"></p>
+</dd>
+<dt>dependent_varname </dt>
+<dd>VARCHAR. The name of the column for dependent variables. </dd>
+<dt>independent_varname </dt>
+<dd>VARCHAR. The name of the column for independent variables. Can be any SQL 
expression that evaluates to an array. </dd>
+<dt>ref_category (optional) </dt>
+<dd>INTEGER, default: 0. Reference category for the multinomial logistic 
regression. </dd>
+<dt>grouping_cols (optional) </dt>
+<dd>VARCHAR, default: NULL. <em>Not currently implemented. Any non-NULL value 
is ignored.</em> An expression list used to group the input dataset into 
discrete groups, running one regression per group. Similar to the SQL "GROUP 
BY" clause. When this value is NULL, no grouping is used and a single result 
model is generated. </dd>
+<dt>marginal_vars(optional) </dt>
+<dd>INTEGER[], default: NULL. An index list (base 1) representing the 
independent variables to compute marginal effects on. When NULL, computes 
marginal effects on all variables. </dd>
+<dt>optimizer_params (optional) </dt>
+<dd>TEXT, default: NULL, which uses the default values of optimizer 
parameters: max_iter=20, optimizer='newton', tolerance=1e-4. It should be a 
string that contains 'key=value' pairs separated by commas. </dd>
+<dt>verbose_mode (optional) </dt>
+<dd>BOOLEAN, default FALSE. When TRUE, provides verbose output of the results 
of training.  </dd>
+</dl>
+<p><a class="anchor" id="examples"></a></p><dl class="section 
user"><dt>Examples</dt><dd></dd></dl>
+<ol type="1">
+<li>View online help for the marginal effects function. <pre class="example">
+SELECT madlib.margins();
+</pre></li>
+<li>Create the sample data set. Use the <code>patients</code> dataset from the 
<a href="group__grp__logreg.html#examples">Logistic Regression examples</a>. 
<pre class="example">
+SELECT * FROM patients;
+</pre> Result: <pre class="result">
+ id | second_attack | treatment | trait_anxiety
+&#160;---+---------------+-----------+---------------
+  1 |             1 |         1 |            70
+  3 |             1 |         1 |            50
+  5 |             1 |         0 |            40
+  7 |             1 |         0 |            75
+  9 |             1 |         0 |            70
+ 11 |             0 |         1 |            65
+ 13 |             0 |         1 |            45
+ 15 |             0 |         1 |            40
+ 17 |             0 |         0 |            55
+ 19 |             0 |         0 |            50
+  2 |             1 |         1 |            80
+  4 |             1 |         0 |            60
+  6 |             1 |         0 |            65
+  8 |             1 |         0 |            80
+ 10 |             1 |         0 |            60
+ 12 |             0 |         1 |            50
+ 14 |             0 |         1 |            35
+ 16 |             0 |         1 |            50
+ 18 |             0 |         0 |            45
+ 20 |             0 |         0 |            60
+</pre></li>
+<li>Run logistic regression to get the model, compute the marginal effects of 
all variables, and view the results. <pre class="example">
+DROP TABLE IF EXISTS model_table;
+DROP TABLE IF EXISTS model_table_summary;
+DROP TABLE IF EXISTS margins_table;
+SELECT madlib.logregr_train( 'patients',
+                             'model_table',
+                             'second_attack',
+                             'ARRAY[1, treatment, trait_anxiety, treatment^2, 
treatment * trait_anxiety]'
+                           );
+SELECT madlib.margins( 'model_table',
+                       'margins_table',
+                       'intercept, treatment, trait_anxiety, treatment^2, 
treatment*trait_anxiety',
+                       NULL,
+                       NULL
+                     );
+\x ON
+SELECT * FROM margins_table;
+</pre> Result: <pre class="result">
+variables | {intercept, treatment, trait_anxiety}
+margins   | {-0.876046514609573,-0.0648833521465306,0.0177196513589633}
+std_err   | {0.551714275062467,0.373592457067442,0.00458001207971933}
+z_stats   | {-1.58786269307674,-0.173674149247659,3.86890930646828}
+p_values  | {0.112317391159946,0.862121554662231,0.000109323294026272}
+</pre></li>
+<li>Compute the marginal effects of the first variable using the previous 
model and view the results (using different names in 'x_design'). <pre 
class="example">
+DROP TABLE IF EXISTS result_table;
+SELECT madlib.margins( 'model_table',
+                       'result_table',
+                       'i, tre, tra, tre^2, tre*tra',
+                       NULL,
+                       'tre'
+                     );
+SELECT * FROM result_table;
+</pre> Result: <pre class="result">
+-[ RECORD 1 ]-------------------
+variables | {tre}
+margins   | {-0.110453283517281}
+std_err   | {0.228981529064089}
+z_stats   | {-0.482367656329023}
+p_values  | {0.629544793219806}
+</pre></li>
+<li>Create a sample data set for multinomial logistic regression. (The full 
dataset has three categories.) Use the dataset from the <a 
href="group__grp__mlogreg.html#examples">Multinomial Regression example</a>. 
<pre class="example">
+\x OFF
+SELECT * FROM test3;
+</pre> Result: <pre class="result">
+ feat1 | feat2 | cat
+-------+-------+-----
+     2 |    33 |   0
+     2 |    31 |   1
+     2 |    36 |   1
+     2 |    31 |   1
+     2 |    41 |   1
+     2 |    37 |   1
+     2 |    44 |   1
+     2 |    46 |   1
+     2 |    46 |   2
+     2 |    39 |   0
+     2 |    44 |   1
+     2 |    44 |   0
+     2 |    67 |   2
+     2 |    59 |   2
+     2 |    59 |   0
+...
+</pre></li>
+<li>Run the regression function and then compute the marginal effects of all 
variables in the regression. <pre class="example">
+DROP TABLE IF EXISTS model_table;
+DROP TABLE IF EXISTS model_table_summary;
+DROP TABLE IF EXISTS result_table;
+SELECT madlib.mlogregr_train('test3', 'model_table', 'cat',
+                             'ARRAY[1, feat1, feat2, feat1*feat2]',
+                             0);
+SELECT madlib.margins('model_table',
+                      'result_table',
+                      'intercept, feat1, feat2, feat1*feat2');
+\x ON
+SELECT * FROM result_table;
+</pre> Result: <pre class="result">
+-[ RECORD 1 ]+-------------------------------------------------------------
+category     | 1
+ref_category | 0
+variables    | {intercept,feat1,feat2}
+margins      | {2.38176571752675,-0.0545733108729351,-0.0147264917310351}
+std_err      | {0.851299967007829,0.0697049196489632,0.00374946341567828}
+z_stats      | {2.79779843748643,-0.782919070099622,-3.92762646235104}
+p_values     | {0.00514522099923651,0.43367463815468,8.57883141882439e-05}
+-[ RECORD 2 ]+-------------------------------------------------------------
+category     | 2
+ref_category | 0
+variables    | {intercept,feat1,feat2}
+margins      | {-1.99279068434949,0.0922540608068343,0.0168049205501686}
+std_err      | {0.742790306495022,0.0690712705200096,0.00202015384479213}
+z_stats      | {-2.68284422524683,1.33563578767686,8.31863404536785}
+p_values     | {0.00729989838349161,0.181668346802398,8.89828265128986e-17}
+</pre></li>
+</ol>
+<p><a class="anchor" id="notes"></a> </p><dl class="section 
note"><dt>Note</dt><dd>The <em>marginal_vars</em> argument is a list with the 
names matching those in 'x_design'. If no 'x_design' is present (i.e. no 
interaction and no indicator variables), then <em>marginal_vars</em> must be 
the indices (base 1) of variables in 'independent_varname'. Use <em>NULL</em> 
to use all independent variables. It is important to note that the 
<em>independent_varname</em> array in the underlying regression is assumed to 
start with a lower bound index of 1. Arrays that don't follow this would result 
in an incorrect solution.</dd></dl>
+<p><a class="anchor" id="background"></a></p><dl class="section 
user"><dt>Technical Background</dt><dd></dd></dl>
+<p>The standard approach to modeling dichotomous/binary variables (so <img 
class="formulaInl" alt="$y \in \{0, 1\} $" src="form_368.png"/>) is to estimate 
a generalized linear model under the assumption that <img class="formulaInl" 
alt="$ y $" src="form_324.png"/> follows some form of Bernoulli distribution. 
Thus the expected value of <img class="formulaInl" alt="$ y $" 
src="form_324.png"/> becomes, </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ y = G(X' \beta), \]" src="form_369.png"/>
+</p>
+<p>where G is the specified binomial distribution. For logistic regression, 
the function <img class="formulaInl" alt="$ G $" src="form_370.png"/> 
represents the inverse logit function.</p>
+<p>In logistic regression: </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ P = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + 
\dots \beta_j x_j)}} = \frac{1}{1 + e^{-z}} \implies \frac{\partial P}{\partial 
X_k} = \beta_k \cdot \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}} \\ = 
\beta_k \cdot P \cdot (1-P) \]" src="form_371.png"/>
+</p>
+<p>There are several methods for calculating the marginal effects for 
dichotomous dependent variables. This package uses the average of the marginal 
effects at every sample observation.</p>
+<p>This is calculated as follows: </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ \frac{\partial y}{\partial x_k} = \beta_k 
\frac{\sum_{i=1}^n P(y_i = 1)(1-P(y_i = 1))}{n}, \\ \text{where}, P(y_i=1) = 
g(X^{(i)}\beta) \]" src="form_372.png"/>
+</p>
+<p>We use the delta method for calculating standard errors on the marginal 
effects.</p>
+<p><a class="anchor" id="literature"></a></p><dl class="section 
user"><dt>Literature</dt><dd></dd></dl>
+<p>[1] mfx function in STATA: <a 
href="http://www.stata.com/help.cgi?mfx_option";>http://www.stata.com/help.cgi?mfx_option</a></p>
+<p><a class="anchor" id="related"></a></p><dl class="section user"><dt>Related 
Topics</dt><dd></dd></dl>
+<p>File <a class="el" href="marginal_8sql__in.html" title="SQL functions for 
linear regression. ">marginal.sql_in</a> documenting the SQL functions.</p>
+</div><!-- contents -->
+</div><!-- doc-content -->
+<!-- start footer part -->
+<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
+  <ul>
+    <li class="footer">Generated on Tue May 16 2017 13:24:38 for MADlib by
+    <a href="http://www.doxygen.org/index.html";>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.13 </li>
+  </ul>
+</div>
+</body>
+</html>

Reply via email to