zmughal commented on a change in pull request #20852:
URL: https://github.com/apache/incubator-mxnet/pull/20852#discussion_r794252536



##########
File path: perl-package/AI-MXNet/lib/AI/MXNet/Metric.pm
##########
@@ -79,7 +79,7 @@ use overload '""' => sub {
 has 'name'       => (is => 'rw', isa => 'Str');
 has 'num'        => (is => 'rw', isa => 'Int');
 has 'num_inst'   => (is => 'rw', isa => 'Maybe[Int|ArrayRef[Int]]');
-has 'sum_metric' => (is => 'rw', isa => 'Maybe[Num|ArrayRef[Num]]');
+has 'sum_metric' => (is => 'rw', isa => 'Maybe[Num|ArrayRef[Num]|PDL]');

Review comment:
       
   == examples/calculator.pl ==
   
   ```
   fullyconnected4_bias -> [0.675975]
   fullyconnected4_weight -> 
   [
    [ 1.00116 0.999985]
   ]
   
   fullyconnected5_bias -> [4.85674e-05]
   fullyconnected5_weight -> 
   [
    [0.000844207 0.000230625    0.508509]
   ]
   
   fullyconnected6_bias -> [0.385759]
   fullyconnected6_weight -> 
   [
    [      1      -1]
   ]
   
   fullyconnected7_bias -> [-2.62715e-06]
   fullyconnected7_weight -> 
   [
    [-1.31198e-05  8.74287e-06     0.679938]
   ]
   
   12345 + 54321 ≈ 66742.1796875
   188 - 88 ≈ 99.8591766357422
   250 * 2 ≈ 503.255798339844
   250 / 2 ≈ 124.998970031738
   ```
   
   == examples/mnist.pl ==
   
   ```
   Epoch[4] Batch [200] Speed: 59678.68 samples/sec     Train-accuracy=0.974726
   Epoch[4] Batch [400] Speed: 57716.06 samples/sec     Train-accuracy=0.973350
   Epoch[4] Train-accuracy=0.974233
   Epoch[4] Time cost=1.057
   Epoch[4] Validation-accuracy=0.967800
   Epoch[5] Batch [200] Speed: 52405.81 samples/sec     Train-accuracy=0.977214
   Epoch[5] Batch [400] Speed: 57804.15 samples/sec     Train-accuracy=0.976100
   Epoch[5] Train-accuracy=0.976950
   Epoch[5] Time cost=1.079
   Epoch[5] Validation-accuracy=0.966500
   Epoch[6] Batch [200] Speed: 57043.78 samples/sec     Train-accuracy=0.977015
   Epoch[6] Batch [400] Speed: 57357.53 samples/sec     Train-accuracy=0.975800
   Epoch[6] Train-accuracy=0.976433
   Epoch[6] Time cost=1.052
   Epoch[6] Validation-accuracy=0.963000
   Epoch[7] Batch [200] Speed: 45378.31 samples/sec     Train-accuracy=0.977711
   Epoch[7] Batch [400] Speed: 55753.34 samples/sec     Train-accuracy=0.976350
   Epoch[7] Train-accuracy=0.977467
   Epoch[7] Time cost=1.144
   Epoch[7] Validation-accuracy=0.963700
   Epoch[8] Batch [200] Speed: 54546.75 samples/sec     Train-accuracy=0.980448
   Epoch[8] Batch [400] Speed: 55774.47 samples/sec     Train-accuracy=0.980000
   Epoch[8] Train-accuracy=0.980217
   Epoch[8] Time cost=1.090
   Epoch[8] Validation-accuracy=0.962900
   Epoch[9] Batch [200] Speed: 48810.85 samples/sec     Train-accuracy=0.980050
   Epoch[9] Batch [400] Speed: 54945.51 samples/sec     Train-accuracy=0.982550
   Epoch[9] Train-accuracy=0.981850
   Epoch[9] Time cost=1.115
   Epoch[9] Validation-accuracy=0.969500
   ```
   
   == examples/sparse/matrix_factorization/train.pl ==
   
   ```
   Epoch[2] Batch [60300]       Speed: 50291.13 samples/sec     
Train-mse=0.706833
   Epoch[2] Batch [60400]       Speed: 54047.43 samples/sec     
Train-mse=0.723078
   Epoch[2] Batch [60500]       Speed: 53646.70 samples/sec     
Train-mse=0.741219
   Epoch[2] Batch [60600]       Speed: 52929.93 samples/sec     
Train-mse=0.706861
   Epoch[2] Batch [60700]       Speed: 53583.14 samples/sec     
Train-mse=0.734509
   Epoch[2] Batch [60800]       Speed: 50907.01 samples/sec     
Train-mse=0.735880
   Epoch[2] Batch [60900]       Speed: 39899.38 samples/sec     
Train-mse=0.758780
   Epoch[2] Batch [61000]       Speed: 48115.77 samples/sec     
Train-mse=0.693772
   Epoch[2] Batch [61100]       Speed: 53833.52 samples/sec     
Train-mse=0.714911
   Epoch[2] Batch [61200]       Speed: 53998.88 samples/sec     
Train-mse=0.731971
   Epoch[2] Batch [61300]       Speed: 51153.75 samples/sec     
Train-mse=0.732873
   Epoch[2] Batch [61400]       Speed: 51454.19 samples/sec     
Train-mse=0.715944
   Epoch[2] Batch [61500]       Speed: 51353.83 samples/sec     
Train-mse=0.715877
   Epoch[2] Batch [61600]       Speed: 53121.93 samples/sec     
Train-mse=0.703896
   Epoch[2] Batch [61700]       Speed: 53345.31 samples/sec     
Train-mse=0.700082
   Epoch[2] Batch [61800]       Speed: 48247.09 samples/sec     
Train-mse=0.734545
   Epoch[2] Batch [61900]       Speed: 42918.29 samples/sec     
Train-mse=0.714020
   Epoch[2] Batch [62000]       Speed: 49330.02 samples/sec     
Train-mse=0.722819
   Epoch[2] Batch [62100]       Speed: 53999.32 samples/sec     
Train-mse=0.736258
   Epoch[2] Batch [62200]       Speed: 51953.96 samples/sec     
Train-mse=0.737786
   Epoch[2] Batch [62300]       Speed: 51416.39 samples/sec     
Train-mse=0.698692
   Epoch[2] Batch [62400]       Speed: 53206.32 samples/sec     
Train-mse=0.716579
   Epoch[2] Batch [62500]       Speed: 52938.28 samples/sec     
Train-mse=0.733243
   Preparing data iterators for ./data/ml-10M100K/r1.train ... 
   Preparing data iterators for ./data/ml-10M100K/r1.test ... 
   Training started ...
   epoch 0, eval MSE = 0.99958598613739 
   epoch 1, eval MSE = 1.03603255748749 
   epoch 2, eval MSE = 1.07017529010773 
   Training completed.
   ```
   
   




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to