agrabows commented on code in PR #21115:
URL: https://github.com/apache/incubator-mxnet/pull/21115#discussion_r946714998


##########
tests/python/dnnl/subgraphs/test_matmul_subgraph.py:
##########
@@ -27,25 +27,47 @@
 
 
 class MultiHeadAttention(nn.HybridBlock):
-  def __init__(self, units, num_heads, dtype='float32', negative_case=False, 
**kwargs):
+  def __init__(self, units, num_heads, batch_size=-1, seq_length=-1, 
dtype='float32', negative_case=False, no_split_case = False, **kwargs):
       super(MultiHeadAttention, self).__init__(**kwargs)
       self._units = units
       self._num_heads = num_heads
       self._fc = nn.Dense(in_units=self._units, units=3*self._units, 
flatten=False, dtype=dtype)
       self._scale = math.sqrt(self._units // self._num_heads)
       self.negative_case = negative_case
+      self.no_split_case = no_split_case
+      self.batch_size = batch_size
+      self.seq_length = seq_length
 
   def forward(self, x, mask):
       out = self._fc(x)
       query, key, value = mx.np.split(out, 3, axis=-1)
+      if self.no_split_case:
+        key = mx.np.expand_dims(key, 3)
+        key = mx.np.broadcast_to(key, (key.shape[0], key.shape[1], 
key.shape[2], self._num_heads))
+        key = mx.np.reshape(key, (key.shape[0], key.shape[1]*self._num_heads, 
key.shape[2]))
+        value = mx.np.expand_dims(value, 3)
+        value = mx.np.broadcast_to(value, (value.shape[0], value.shape[1], 
value.shape[2], self._num_heads))
+        value = mx.np.reshape(value, (value.shape[0], 
value.shape[1]*self._num_heads, value.shape[2]))
+      query = mx.np.reshape(query, (-2, -2, self._num_heads, -1))
       if self.negative_case:
-        key = key * 2
-      query = mx.npx.reshape(query, (-2, -2, self._num_heads, -1))
-      key = mx.npx.reshape(key, (-2, -2, self._num_heads, -1))
-      value = mx.npx.reshape(value, (-2, -2, self._num_heads, -1))
+        shape_from = self.batch_size * self.seq_length * self._units
+        shape_to = self.batch_size * self._num_heads * self.seq_length* 
self.seq_length

Review Comment:
   this part was deleted



##########
tests/python/dnnl/subgraphs/test_matmul_subgraph.py:
##########
@@ -27,25 +27,47 @@
 
 
 class MultiHeadAttention(nn.HybridBlock):
-  def __init__(self, units, num_heads, dtype='float32', negative_case=False, 
**kwargs):
+  def __init__(self, units, num_heads, batch_size=-1, seq_length=-1, 
dtype='float32', negative_case=False, no_split_case = False, **kwargs):
       super(MultiHeadAttention, self).__init__(**kwargs)
       self._units = units
       self._num_heads = num_heads
       self._fc = nn.Dense(in_units=self._units, units=3*self._units, 
flatten=False, dtype=dtype)
       self._scale = math.sqrt(self._units // self._num_heads)
       self.negative_case = negative_case
+      self.no_split_case = no_split_case
+      self.batch_size = batch_size
+      self.seq_length = seq_length
 
   def forward(self, x, mask):
       out = self._fc(x)
       query, key, value = mx.np.split(out, 3, axis=-1)
+      if self.no_split_case:
+        key = mx.np.expand_dims(key, 3)
+        key = mx.np.broadcast_to(key, (key.shape[0], key.shape[1], 
key.shape[2], self._num_heads))
+        key = mx.np.reshape(key, (key.shape[0], key.shape[1]*self._num_heads, 
key.shape[2]))
+        value = mx.np.expand_dims(value, 3)
+        value = mx.np.broadcast_to(value, (value.shape[0], value.shape[1], 
value.shape[2], self._num_heads))
+        value = mx.np.reshape(value, (value.shape[0], 
value.shape[1]*self._num_heads, value.shape[2]))
+      query = mx.np.reshape(query, (-2, -2, self._num_heads, -1))
       if self.negative_case:
-        key = key * 2
-      query = mx.npx.reshape(query, (-2, -2, self._num_heads, -1))
-      key = mx.npx.reshape(key, (-2, -2, self._num_heads, -1))
-      value = mx.npx.reshape(value, (-2, -2, self._num_heads, -1))
+        shape_from = self.batch_size * self.seq_length * self._units
+        shape_to = self.batch_size * self._num_heads * self.seq_length* 
self.seq_length
+        if shape_to >= shape_from:
+          shape_dif = int(shape_to/shape_from) + 1
+        else:
+          shape_dif = int(shape_from/shape_to) + 1
+        negative_test_tensor = mx.np.reshape(query, (shape_from, 1))
+        negative_test_tensor = mx.np.broadcast_to(negative_test_tensor, 
(shape_from, shape_dif))
+        negative_test_tensor = negative_test_tensor.flatten()
+        negative_test_tensor = mx.np.split(negative_test_tensor, [shape_to])[0]
+        negative_test_tensor = mx.np.reshape(negative_test_tensor, 
(self.batch_size,self._num_heads,self.seq_length,self.seq_length))

Review Comment:
   this part was deleted



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to