samskalicky commented on a change in pull request #17569: Adding sparse support 
to MXTensor for custom operators
URL: https://github.com/apache/incubator-mxnet/pull/17569#discussion_r392023970
 
 

 ##########
 File path: src/c_api/c_api.cc
 ##########
 @@ -572,12 +645,30 @@ int MXLoadLib(const char *path) {
                                 DispatchMode* dispatch_mode,
                                 std::vector<int>* in_stypes,
                                 std::vector<int>* out_stypes) {
-      // TODO(ziyimu): remove this dense enforce check after supporting sparse 
tensor
-      CHECK(mxnet::common::ContainsOnlyStorage(*in_stypes, 
mxnet::kDefaultStorage))
-      << "Error input tensors are not dense for custom operator '" << name_str 
<< "'";
-      // set outputs as dense
-      return op::storage_type_assign(out_stypes, mxnet::kDefaultStorage,
-                                     dispatch_mode, DispatchMode::kFComputeEx);
+      // convert attributes to vector of char*
+      std::vector<const char*> attr_keys, attr_vals;
+      for (auto kv : attrs.dict) {
+        attr_keys.push_back(kv.first.c_str());
+        attr_vals.push_back(kv.second.c_str());
+      }
+      // copy input types from in_stype
+      std::vector<int> instypes(*in_stypes);
+
+      // output types will be populated by inferType function
+      std::vector<int> outstypes(out_stypes->size());
+
+      CHECK(callInferSType(stype_fp, attr_keys.data(), attr_vals.data(), 
attr_keys.size(),
 
 Review comment:
   we could just check if stype_fp == nullptr and then do the default for dense 
that we had before

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to