access2rohit edited a comment on issue #17960:
URL: 
https://github.com/apache/incubator-mxnet/issues/17960#issuecomment-621444309


   @szhengac I changed the line in run_pretraining.py
   ```
       trainer = mx.gluon.Trainer(model.collect_params(), 'bertadam', 
optim_params,
                                  update_on_kvstore=False, kvstore=store)
   ```
   to 
   ```
       trainer = mx.gluon.Trainer(model.collect_params(), 'lamb', optim_params,
                                  update_on_kvstore=False, kvstore=store)
   ```
   I still the the follwoing error:
   ```
   
/home/ubuntu/workspace/incubator-mxnet/python/mxnet/optimizer/optimizer.py:163: 
UserWarning: WARNING: New optimizer gluonnlp.optimizer.lamb.LAMB is overriding 
existing optimizer mxnet.optimizer.lamb.LAMB
     Optimizer.opt_registry[name].__name__))
   INFO:root:Namespace(accumulate=4, batch_size=8, batch_size_eval=8, 
ckpt_dir='./ckpt_dir', ckpt_interval=25000, 
data='/home/ubuntu/.mxnet/datasets/bert_input/part-000.npz', 
data_eval='/home/ubuntu/.mxnet/datasets/bert_input/part-000.npz', 
dataset_name='book_corpus_wiki_en_uncased', dtype='float16', 
dummy_data_len=None, gpus='0', kvstore='device', log_interval=250, lr=0.0001, 
model='bert_12_768_12', num_buckets=10, num_steps=100000, pretrained=False, 
profile=None, start_step=0, use_avg_len=False, verbose=False, warmup_ratio=0.01)
   [20:23:04] ../src/base.cc:84: Upgrade advisory: this mxnet has been built 
against cuDNN lib version 7501, which is older than the oldest version tested 
by CI (7600).  Set MXNET_CUDNN_LIB_CHECKING=0 to quiet this warning.
   [20:23:10] ../src/storage/storage.cc:110: Using 
GPUPooledRoundedStorageManager.
   INFO:root:Using training data at 
/home/ubuntu/.mxnet/datasets/bert_input/part-000.npz
   INFO:root:1 files found.
   [20:23:57] 
../src/kvstore/././../ndarray/../operator/tensor/../../common/utils.h:474: 
MXNET_SAFE_ACCUMULATION=1 is recommended for LayerNorm with float16 inputs. See 
https://mxnet.apache.org/api/faq/env_var for more details.
   [20:23:57] ../src/operator/nn/./../../common/utils.h:474: 
MXNET_SAFE_ACCUMULATION=1 is recommended for softmax with float16 inputs. See 
https://mxnet.apache.org/api/faq/env_var for more details.
   [20:23:57] 
../src/kvstore/././../ndarray/../operator/tensor/../../common/utils.h:474: 
MXNET_SAFE_ACCUMULATION=1 is recommended for LayerNorm with float16 inputs. See 
https://mxnet.apache.org/api/faq/env_var for more details.
   [20:23:58] ../src/operator/nn/./../../common/utils.h:474: 
MXNET_SAFE_ACCUMULATION=1 is recommended for softmax with float16 inputs. See 
https://mxnet.apache.org/api/faq/env_var for more details.
   Traceback (most recent call last):
     File 
"/home/ubuntu/MXNet-Benchmarks/mxnet_scripts/training_scripts/bert/run_pretraining.py",
 line 237, in <module>
       train(data_train, model, nsp_loss, mlm_loss, len(vocab), ctx, store)
     File 
"/home/ubuntu/MXNet-Benchmarks/mxnet_scripts/training_scripts/bert/run_pretraining.py",
 line 192, in train
       fp16_trainer.step(1, max_norm=1)
     File 
"/home/ubuntu/MXNet-Benchmarks/mxnet_scripts/training_scripts/bert/fp16_utils.py",
 line 171, in step
       self.fp32_trainer.update(step_size)
     File 
"/home/ubuntu/workspace/incubator-mxnet/python/mxnet/gluon/trainer.py", line 
437, in update
       self._update(ignore_stale_grad)
     File 
"/home/ubuntu/workspace/incubator-mxnet/python/mxnet/gluon/trainer.py", line 
470, in _update
       updater(i, g, w)
     File 
"/home/ubuntu/workspace/incubator-mxnet/python/mxnet/optimizer/updater.py", 
line 93, in __call__
       self.optimizer.update_multi_precision([i], [w], [g], [self.states[i]])
     File 
"/home/ubuntu/workspace/incubator-mxnet/python/mxnet/optimizer/optimizer.py", 
line 349, in update_multi_precision
       self.update(indices, weights_master_copy, grads32, original_states)
     File 
"/home/ubuntu/.local/lib/python3.6/site-packages/gluonnlp/optimizer/lamb.py", 
line 94, in update
       assert(isinstance(weight, NDArray))
   AssertionError
   ```


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to