ZhennanQin commented on a change in pull request #14641: [MKLDNN]Improve
quantizeV2 and dequantize latency
URL: https://github.com/apache/incubator-mxnet/pull/14641#discussion_r276058197
##########
File path: src/operator/quantization/mkldnn/mkldnn_quantize_v2-inl.h
##########
@@ -137,21 +75,101 @@ static void MKLDNNQuantizeV2Compute(const
nnvm::NodeAttrs& attrs, const OpContex
}
}
if (req[0] != kWriteInplace) {
- const_cast<NDArray&>(outputs[0]).CopyFrom(*inputs[0].GetMKLDNNData());
+ const_cast<NDArray &>(outputs[0]).CopyFrom(*inputs[0].GetMKLDNNData());
MKLDNNStream::Get()->Submit();
}
} else {
- auto out_type = GetOutputType(param);
+ if (in_buffer.IsView() && in_buffer.IsMKLDNNData()) in_buffer =
inputs[0].Reorder2Default();
+ auto i_mem = in_buffer.GetMKLDNNData();
+
+ if (param_.min_calib_range.has_value() &&
param_.max_calib_range.has_value()) {
+ data_min = param_.min_calib_range.value();
+ data_max = param_.max_calib_range.value();
+ } else {
+ // no calib info
+ in_buffer = inputs[0].Reorder2Default();
+ auto in_ptr = in_buffer.data().dptr<float>();
+ auto nthreads = engine::OpenMP::Get()->GetRecommendedOMPThreadCount();
+ std::vector<float> data_maxs(nthreads, data_max);
+ std::vector<float> data_mins(nthreads, data_min);
+#pragma omp parallel for num_threads(nthreads)
+ for (index_t i = 0; i < static_cast<index_t>(in_buffer.shape().Size());
i++) {
+ int tid = omp_get_thread_num();
+ if (in_ptr[i] > data_maxs[tid]) data_maxs[tid] = in_ptr[i];
+ if (in_ptr[i] < data_mins[tid]) data_mins[tid] = in_ptr[i];
+ }
+ for (index_t i = 0; i < nthreads; i++) {
+ if (data_maxs[i] > data_max) data_max = data_maxs[i];
+ if (data_mins[i] < data_min) data_min = data_mins[i];
+ }
+ }
+
+ // Write output min/max
+ auto out_type = GetOutputType(param_);
if (out_type == mshadow::kUint8) {
- MKLDNNQuantizeComputeKer<float, uint8_t>(inputs, outputs, param, req);
+ quantized_range = kUint8Range;
+ *outputs[1].data().dptr<float>() = data_min;
+ *outputs[2].data().dptr<float>() = data_max;
} else if (out_type == mshadow::kInt8) {
- MKLDNNQuantizeComputeKer<float, int8_t>(inputs, outputs, param, req);
+ float real_range = MaxAbs(data_min, data_max);
+ quantized_range = kInt8Range;
+ *outputs[1].data().dptr<float>() = -real_range;
+ *outputs[2].data().dptr<float>() = real_range;
} else {
LOG(FATAL) << "mkldnn quantize op only supports int8 and uint8 as output
type";
}
+
+ if (initalized_ && (cached_data_min_ != data_min || cached_data_max_ !=
data_max))
+ initalized_ = false;
Review comment:
Yes. It's an optimization we can consider to add. But I have to say, adding
epsilon comparison can only benefit some rare case, but slightly hurt the
performance of static graph with calibration, which is the most use case for
this op. Also, if epsilon isn't chose well, accuracy issue may introduce and
hard to debug. So I suggest to add this when we face an case that really need
it.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services