Repository: systemml-website
Updated Branches:
  refs/heads/master 733cbd741 -> 2c1e7dfca


Add 1.0.0 release notes, and updated roadmap


Project: http://git-wip-us.apache.org/repos/asf/systemml-website/repo
Commit: http://git-wip-us.apache.org/repos/asf/systemml-website/commit/2c1e7dfc
Tree: http://git-wip-us.apache.org/repos/asf/systemml-website/tree/2c1e7dfc
Diff: http://git-wip-us.apache.org/repos/asf/systemml-website/diff/2c1e7dfc

Branch: refs/heads/master
Commit: 2c1e7dfca536dc2ae885ac527950cfebf07b84c9
Parents: 733cbd7
Author: Berthold Reinwald <[email protected]>
Authored: Thu Dec 21 11:42:24 2017 -0800
Committer: Berthold Reinwald <[email protected]>
Committed: Thu Dec 21 11:42:24 2017 -0800

----------------------------------------------------------------------
 .../systemml-release-notes-1.0.0.md             |  94 ++++++++++++
 _src/roadmap.html                               | 143 +++++++++++++++----
 2 files changed, 209 insertions(+), 28 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/systemml-website/blob/2c1e7dfc/_src/release-notes/systemml-release-notes-1.0.0.md
----------------------------------------------------------------------
diff --git a/_src/release-notes/systemml-release-notes-1.0.0.md 
b/_src/release-notes/systemml-release-notes-1.0.0.md
new file mode 100644
index 0000000..6e0ad0d
--- /dev/null
+++ b/_src/release-notes/systemml-release-notes-1.0.0.md
@@ -0,0 +1,94 @@
+---
+layout: page
+title: SystemML 1.0.0 Release Notes
+description: Project Release Notes
+group: nav-right
+---
+<!--
+{% comment %}
+Licensed to the Apache Software Foundation (ASF) under one or more
+contributor license agreements.  See the NOTICE file distributed with
+this work for additional information regarding copyright ownership.
+The ASF licenses this file to you under the Apache License, Version 2.0
+(the "License"); you may not use this file except in compliance with
+the License.  You may obtain a copy of the License at
+
+http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+{% endcomment %}
+-->
+
+<section class="full-stripe full-stripe--subpage-header clear-header">
+  <div class="ml-container ml-container--horizontally-center">
+    <div class="col col-12 content-group content-group--center-content 
content-group--center-align">
+      <h1>{{ site.data.project.name }} 1.0.0 Release Notes</h1>
+    </div>
+  </div>
+</section>
+
+<section class="full-stripe full-stripe--alternate">
+  <div class="ml-container">
+    <div class="col col-12 content-group content-group--medium-bottom-margin" 
markdown="1">
+
+The Apache SystemML 1.0.0 release was approved on December 12, 2017. The 
release includes enhancements, features, and additions as listed below.
+
+### API Enhancements
+- JMLC/MLContext parameter passing w/ and w/o meta data.
+
+### Deep Learning
+- Improved CPU convolution function performance, including sparsity.
+- `Caffe2DML`.
+- Enhanced/additional NN layers, e.g. conv2d transpose and depthwise 
convolution
+- NN architecture summary table.
+- [Experimental] `Keras2DML`.
+
+### New Scripts / Algorithms
+- Autoencoder.
+- Enhanced PCA.
+
+### Features & new Functions
+- `sinh`, `cosh`, and `tanh`.
+- `transformcolmap`.
+- n-ary `rbind`/`cbind`.
+- `order` with multiple order-by columns.
+
+### Compiler
+- Improved rewrites, e.g. merging of statement block sequences.
+- IPA effectiveness.
+- Automatic vectorization of indexing pairs.
+- Instruction generation for memory efficiency.
+- Instruction code organization.
+- [Experimental] Code generation, code gen optimizer, and multi-threaded 
codegen operators.
+
+### Robustness & Performance
+- ParFor/HOP Memory budgets for Spark cluster configurations.
+- JMLC prepared scripts (thread affinity for outputs and configs, script 
cloning, configuration management).
+- Sparse-dense binary cell wise operations.
+
+### [Experimental] GPU
+- GPU conv2d and memory estimates.
+- Additional kernels,e.g. right indexing.
+- Single precision backend.
+
+### Additional Packages
+- SystemML Lite artifact, a minimumm-size uber JAR for embeddability (w/o 
Hadoop or Spark dependencies).
+
+### Environment
+- Compression on by default.
+- Exploitation of native BLAS libraries.
+- JDK 8 (dropped JDK 7).
+- jCUDA for Windows & Linux (x86_64, ppc64le) included.
+- Fine-grained runtime statistics.
+- Refactored configurations parameters to have sysml prefix
+- Performance test suite.
+
+### Other
+- Refreshed/new examples and notebooks (DML examples), tutorial.
+
+### [JIRA release 
notes](https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12319522&version=12338328)
+- Features, Improvements, Bug fixes, etc.  

http://git-wip-us.apache.org/repos/asf/systemml-website/blob/2c1e7dfc/_src/roadmap.html
----------------------------------------------------------------------
diff --git a/_src/roadmap.html b/_src/roadmap.html
index b0a2681..45ebca9 100644
--- a/_src/roadmap.html
+++ b/_src/roadmap.html
@@ -36,19 +36,75 @@ limitations under the License.
 <section class="full-stripe full-stripe--alternate">
   <div class="ml-container ml-container--narrow content-group">
     <div class="col col-12">
-      <h2>Planned for Future SystemML 1.0</h2>
+      <h2>Planned for Future SystemML 1.1</h2>
       <ul>
-        <li>Compression (additional operations)</li>
-        <li>Experimental Features:
+        <li>Algorithms & builtin functions
           <ul>
-            <li>Deep Learning</li>
-            <li>Single GPU support</li>
-            <li>Native BLAS support</li>
-            <li>Code Generation</li>
+            <li>NN layers-based factorization machines with regression & 
classification capabilities</li>
+            <li>NN optimization test suite with well known optimization test 
functions</li>
+            <li>Model selection & hyper parameter tuning</li>
+            <li>Additional distribution functions, e.g. weibull, gamma</li>
+            <li>Generalization of operations, such as xor, and other 
operations</li>
+          </ul>
+        </li>
+        <li>Enhanced Deep Learning support
+          <ul>
+            <li>Coherent sparse operations on CPU/GPU</li>
+            <li>Coherent single-precision support on CPU/GPU</li>
+            <li>Distributed DL operations</li>
+          </ul>
+        </li>
+        <li>GPU Support
+          <ul>
+            <li>Full compiler integration (cost-based, automatic 
placement)</li>
+            <li>Multi GPUs</li>
+            <li>Distributed GPUs</li>
+          </ul>
+        </li>
+        <li>Code generation
+          <ul>
+            <li>Deep learning operationss</li>
+            <li>Heterogeneous HW, incl GPUs</li>
           </ul>
         </li>
-        <li>Rigorous Performance and Scalability Testing (Bug Fixes)</li>
-        <li>Remove Deprecated APIs/Functions</li>
+        <li>Compressed Linear Algebra
+          <ul>
+            <li>Matrix-matrix multiplications</li>
+            <li>Deep learning operations</li>
+            <li>Ultra-sparse datasets</li>
+          </ul>
+        </li>
+        <li>Misc Runtime
+          <ul>
+            <li>Large dense matrix blocks > 16GB</li>
+            <li>NUMA-awareness (thread pools, matrix partitioning)</li>
+            <li>Unified memory management (ops, bufferpool, 
RDDs/broadcasts)</li>
+            <li>Support additional external formats such as feather format for 
matrices and frames</li>
+            <li>Parfor support for broadcasts</li>
+            <li>Extended support for multi-threaded operations</li>
+            <li>Boolean matrices</li>
+          </ul>
+        </li>
+        <li>Misc Compiler
+          <ul>
+            <li>Support single-output UDFs in expressions</li>
+            <li>Consolidate replicated compilation chain (e.g., diff APIs)</li>
+            <li>Holistic sum-product optimization and operator fusion</li>
+            <li>Extended sparsity estimators</li>
+            <li>Rewrites and compiler improvements for mini-batching including 
prefetching</li>
+            <li>Parfor optimizer support for shared reads</li>
+            <li>SPOOF compiler improvement</li>
+          </ul>
+        </li>
+        <li>APIs
+          <ul>
+            <li>Python Binding for JMLC API</li>
+            <li>Consistency Python/Java APIs</li>
+          </ul>
+
+        </li>
+
+
       </ul>
     </div>
 
@@ -72,6 +128,40 @@ limitations under the License.
       <h2>Current Release</h2>
       <ul>
         <li>
+          <strong>SystemML 1.0.0 (<a 
href="release-notes/systemml-release-notes-1.0.0.html">released</a> in 
December, 2017)
+          <a 
href="https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12319522&version=12338328";>details</a></strong>
+          <ul>
+            <li>Enhanced Deep Learning support with enhanced NN layers and 
functions, Caffe2DML, and operator implementation</li>
+            <li>Native BLAS support</li>
+            <li>Additional algorithms: autoencoder, enhanced PCA</li>
+            <li>Enhanced rewrites, IPA, vectorization, and instruction 
generation</li>
+            <li>Enhanced JMLC API, e.g. prepared scripts with thread affinity 
for outputs and configs, script cloning, configuration management</li>
+            <li>SystemML Lite artifact</li>
+            <li>Compression on by default</li>
+          </ul>
+        </li>
+        <li>
+          Experimental Features
+          <ul>
+            <li>Keras2DML.</li>
+            <li>Enhanced code generation, code gen optimizer, and 
multi-threaded codegen operators/li>
+              <li>Enhanced GPU support</li>
+          </ul>
+          </li>
+          <li>
+            Removals
+            <ul>
+              <li>Dropped JDK 7 support</li>
+            </ul>
+          </li>
+      </ul>
+    </div>
+
+    <div class="col col-12">
+      <h2>Prior Releases</h2>
+
+      <ul>
+        <li>
           <strong>SystemML 0.15.0 (<a 
href="release-notes/systemml-release-notes-0.15.0.html">released</a> in 
September, 2017)
           <a 
href="https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12319522&version=12341587";>details</a></strong>
           <ul>
@@ -94,10 +184,6 @@ limitations under the License.
           </ul>
         </li>
       </ul>
-    </div>
-
-    <div class="col col-12">
-      <h2>Prior Releases</h2>
 
       <ul>
         <li>
@@ -111,8 +197,9 @@ limitations under the License.
         <li>
           Experimental Features
           <ul>
-            <li>New Code Generation capabilities for automatic operator fusion 
(basic code generator, compiler integration, runtime integration, in-memory 
source code compilation, extended explain tool, support for right indexing and 
replace in cellwise and row aggregate templates, support for row, column, or no 
aggregation in rowwise template).
-            Note code generation provides significant performance gains with 
fewer read/write intermediates, reduced scans of inputs and intermediates, and 
enhanced sparsity exploitation. To enable this feature, set codegen.enabled 
property to true in SystemML-config.xml file.</li>
+            <li>New Code Generation capabilities for automatic operator fusion 
(basic code generator, compiler integration, runtime integration, in-memory 
source code compilation, extended explain tool, support for right indexing and 
replace in cellwise and
+              row aggregate templates, support for row, column, or no 
aggregation in rowwise template). Note code generation provides significant 
performance gains with fewer read/write intermediates, reduced scans of inputs 
and intermediates, and enhanced
+              sparsity exploitation. To enable this feature, set 
codegen.enabled property to true in SystemML-config.xml file.</li>
             <li>New instructions and operators for GPU support 
(relu_maxpooling, conv2d_bias_add, bias_multiply)</li>
           </ul>
         </li>
@@ -131,30 +218,30 @@ limitations under the License.
           <a 
href="https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12319522&version=12339247";>details</a></strong>
           <ul>
             <li>Updated build for Spark 2.1.0</li>
-                       <li>New simplification rewrites for stratstats</li>
-                       <li>New fused operator tack+* in CP and Spark</li>
+            <li>New simplification rewrites for stratstats</li>
+            <li>New fused operator tack+* in CP and Spark</li>
             <li>New dmlFromResource capability in Python (equivalent to 
Scala)</li>
-                       <li>Add input float support to MLContext</li>
+            <li>Add input float support to MLContext</li>
           </ul>
         </li>
         <li>
           Documentation Enhancements
           <ul>
             <li>Deploy versioned documentation to main project website</li>
-                       <li>Add python mlcontext example to engine dev 
guide</li>
-                       <li>Add MLContext info functionality to docs</li>
-                       <li>Update DML Language Reference for write description 
parameter</li>
+            <li>Add python mlcontext example to engine dev guide</li>
+            <li>Add MLContext info functionality to docs</li>
+            <li>Update DML Language Reference for write description 
parameter</li>
           </ul>
         </li>
         <li>
           Deprecations, Removals
           <ul>
             <li>Deprecate old MLContext API</li>
-                       <li>Deprecate parfor perftesttool</li>
-                       <li>Deprecate SQLContext methods</li>
-                       <li>Replace deprecated Accumulator with 
AccumulatorV2</li>
-                       <li>Replace append with cbind for matrices</li>
-                       <li>Migrate Vector and LabeledPoint classes from mllib 
to ml</li>
+            <li>Deprecate parfor perftesttool</li>
+            <li>Deprecate SQLContext methods</li>
+            <li>Replace deprecated Accumulator with AccumulatorV2</li>
+            <li>Replace append with cbind for matrices</li>
+            <li>Migrate Vector and LabeledPoint classes from mllib to ml</li>
           </ul>
         </li>
         <li>
@@ -173,8 +260,8 @@ limitations under the License.
             <li>Support pip install of new python package</li>
             <li>Allow NumPy arrays, Pandas DataFrame and SciPy matrices as 
input to MLContext</li>
             <li>Improve SystemML Python DSL for NumPy</li>
-                       <li>Updated build for Spark 1.6.0</li>
-                       <li>DML utility script to shuffle input dataset</li>
+            <li>Updated build for Spark 1.6.0</li>
+            <li>DML utility script to shuffle input dataset</li>
           </ul>
         </li>
         <li>

Reply via email to