Author: reinwald
Date: Thu Dec 21 19:49:38 2017
New Revision: 1818972

URL: http://svn.apache.org/viewvc?rev=1818972&view=rev
Log:
Add 1.0.0 release notes, and updated roadmap

Modified:
    systemml/site/roadmap.html

Modified: systemml/site/roadmap.html
URL: 
http://svn.apache.org/viewvc/systemml/site/roadmap.html?rev=1818972&r1=1818971&r2=1818972&view=diff
==============================================================================
--- systemml/site/roadmap.html (original)
+++ systemml/site/roadmap.html Thu Dec 21 19:49:38 2017
@@ -175,19 +175,75 @@
 <section class="full-stripe full-stripe--alternate">
   <div class="ml-container ml-container--narrow content-group">
     <div class="col col-12">
-      <h2>Planned for Future SystemML 1.0</h2>
+      <h2>Planned for Future SystemML 1.1</h2>
       <ul>
-        <li>Compression (additional operations)</li>
-        <li>Experimental Features:
+        <li>Algorithms & builtin functions
           <ul>
-            <li>Deep Learning</li>
-            <li>Single GPU support</li>
-            <li>Native BLAS support</li>
-            <li>Code Generation</li>
+            <li>NN layers-based factorization machines with regression & 
classification capabilities</li>
+            <li>NN optimization test suite with well known optimization test 
functions</li>
+            <li>Model selection & hyper parameter tuning</li>
+            <li>Additional distribution functions, e.g. weibull, gamma</li>
+            <li>Generalization of operations, such as xor, and other 
operations</li>
+          </ul>
+        </li>
+        <li>Enhanced Deep Learning support
+          <ul>
+            <li>Coherent sparse operations on CPU/GPU</li>
+            <li>Coherent single-precision support on CPU/GPU</li>
+            <li>Distributed DL operations</li>
+          </ul>
+        </li>
+        <li>GPU Support
+          <ul>
+            <li>Full compiler integration (cost-based, automatic 
placement)</li>
+            <li>Multi GPUs</li>
+            <li>Distributed GPUs</li>
+          </ul>
+        </li>
+        <li>Code generation
+          <ul>
+            <li>Deep learning operationss</li>
+            <li>Heterogeneous HW, incl GPUs</li>
+          </ul>
+        </li>
+        <li>Compressed Linear Algebra
+          <ul>
+            <li>Matrix-matrix multiplications</li>
+            <li>Deep learning operations</li>
+            <li>Ultra-sparse datasets</li>
+          </ul>
+        </li>
+        <li>Misc Runtime
+          <ul>
+            <li>Large dense matrix blocks > 16GB</li>
+            <li>NUMA-awareness (thread pools, matrix partitioning)</li>
+            <li>Unified memory management (ops, bufferpool, 
RDDs/broadcasts)</li>
+            <li>Support additional external formats such as feather format for 
matrices and frames</li>
+            <li>Parfor support for broadcasts</li>
+            <li>Extended support for multi-threaded operations</li>
+            <li>Boolean matrices</li>
+          </ul>
+        </li>
+        <li>Misc Compiler
+          <ul>
+            <li>Support single-output UDFs in expressions</li>
+            <li>Consolidate replicated compilation chain (e.g., diff APIs)</li>
+            <li>Holistic sum-product optimization and operator fusion</li>
+            <li>Extended sparsity estimators</li>
+            <li>Rewrites and compiler improvements for mini-batching including 
prefetching</li>
+            <li>Parfor optimizer support for shared reads</li>
+            <li>SPOOF compiler improvement</li>
+          </ul>
+        </li>
+        <li>APIs
+          <ul>
+            <li>Python Binding for JMLC API</li>
+            <li>Consistency Python/Java APIs</li>
           </ul>
+
         </li>
-        <li>Rigorous Performance and Scalability Testing (Bug Fixes)</li>
-        <li>Remove Deprecated APIs/Functions</li>
+
+
       </ul>
     </div>
 
@@ -211,6 +267,40 @@
       <h2>Current Release</h2>
       <ul>
         <li>
+          <strong>SystemML 1.0.0 (<a 
href="release-notes/systemml-release-notes-1.0.0.html">released</a> in 
December, 2017)
+          <a 
href="https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12319522&version=12338328";>details</a></strong>
+          <ul>
+            <li>Enhanced Deep Learning support with enhanced NN layers and 
functions, Caffe2DML, and operator implementation</li>
+            <li>Native BLAS support</li>
+            <li>Additional algorithms: autoencoder, enhanced PCA</li>
+            <li>Enhanced rewrites, IPA, vectorization, and instruction 
generation</li>
+            <li>Enhanced JMLC API, e.g. prepared scripts with thread affinity 
for outputs and configs, script cloning, configuration management</li>
+            <li>SystemML Lite artifact</li>
+            <li>Compression on by default</li>
+          </ul>
+        </li>
+        <li>
+          Experimental Features
+          <ul>
+            <li>Keras2DML.</li>
+            <li>Enhanced code generation, code gen optimizer, and 
multi-threaded codegen operators/li>
+              <li>Enhanced GPU support</li>
+          </ul>
+          </li>
+          <li>
+            Removals
+            <ul>
+              <li>Dropped JDK 7 support</li>
+            </ul>
+          </li>
+      </ul>
+    </div>
+
+    <div class="col col-12">
+      <h2>Prior Releases</h2>
+
+      <ul>
+        <li>
           <strong>SystemML 0.15.0 (<a 
href="release-notes/systemml-release-notes-0.15.0.html">released</a> in 
September, 2017)
           <a 
href="https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12319522&version=12341587";>details</a></strong>
           <ul>
@@ -233,10 +323,6 @@
           </ul>
         </li>
       </ul>
-    </div>
-
-    <div class="col col-12">
-      <h2>Prior Releases</h2>
 
       <ul>
         <li>
@@ -250,8 +336,9 @@
         <li>
           Experimental Features
           <ul>
-            <li>New Code Generation capabilities for automatic operator fusion 
(basic code generator, compiler integration, runtime integration, in-memory 
source code compilation, extended explain tool, support for right indexing and 
replace in cellwise and row aggregate templates, support for row, column, or no 
aggregation in rowwise template).
-            Note code generation provides significant performance gains with 
fewer read/write intermediates, reduced scans of inputs and intermediates, and 
enhanced sparsity exploitation. To enable this feature, set codegen.enabled 
property to true in SystemML-config.xml file.</li>
+            <li>New Code Generation capabilities for automatic operator fusion 
(basic code generator, compiler integration, runtime integration, in-memory 
source code compilation, extended explain tool, support for right indexing and 
replace in cellwise and
+              row aggregate templates, support for row, column, or no 
aggregation in rowwise template). Note code generation provides significant 
performance gains with fewer read/write intermediates, reduced scans of inputs 
and intermediates, and enhanced
+              sparsity exploitation. To enable this feature, set 
codegen.enabled property to true in SystemML-config.xml file.</li>
             <li>New instructions and operators for GPU support 
(relu_maxpooling, conv2d_bias_add, bias_multiply)</li>
           </ul>
         </li>
@@ -270,30 +357,30 @@
           <a 
href="https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12319522&version=12339247";>details</a></strong>
           <ul>
             <li>Updated build for Spark 2.1.0</li>
-                       <li>New simplification rewrites for stratstats</li>
-                       <li>New fused operator tack+* in CP and Spark</li>
+            <li>New simplification rewrites for stratstats</li>
+            <li>New fused operator tack+* in CP and Spark</li>
             <li>New dmlFromResource capability in Python (equivalent to 
Scala)</li>
-                       <li>Add input float support to MLContext</li>
+            <li>Add input float support to MLContext</li>
           </ul>
         </li>
         <li>
           Documentation Enhancements
           <ul>
             <li>Deploy versioned documentation to main project website</li>
-                       <li>Add python mlcontext example to engine dev 
guide</li>
-                       <li>Add MLContext info functionality to docs</li>
-                       <li>Update DML Language Reference for write description 
parameter</li>
+            <li>Add python mlcontext example to engine dev guide</li>
+            <li>Add MLContext info functionality to docs</li>
+            <li>Update DML Language Reference for write description 
parameter</li>
           </ul>
         </li>
         <li>
           Deprecations, Removals
           <ul>
             <li>Deprecate old MLContext API</li>
-                       <li>Deprecate parfor perftesttool</li>
-                       <li>Deprecate SQLContext methods</li>
-                       <li>Replace deprecated Accumulator with 
AccumulatorV2</li>
-                       <li>Replace append with cbind for matrices</li>
-                       <li>Migrate Vector and LabeledPoint classes from mllib 
to ml</li>
+            <li>Deprecate parfor perftesttool</li>
+            <li>Deprecate SQLContext methods</li>
+            <li>Replace deprecated Accumulator with AccumulatorV2</li>
+            <li>Replace append with cbind for matrices</li>
+            <li>Migrate Vector and LabeledPoint classes from mllib to ml</li>
           </ul>
         </li>
         <li>
@@ -312,8 +399,8 @@
             <li>Support pip install of new python package</li>
             <li>Allow NumPy arrays, Pandas DataFrame and SciPy matrices as 
input to MLContext</li>
             <li>Improve SystemML Python DSL for NumPy</li>
-                       <li>Updated build for Spark 1.6.0</li>
-                       <li>DML utility script to shuffle input dataset</li>
+            <li>Updated build for Spark 1.6.0</li>
+            <li>DML utility script to shuffle input dataset</li>
           </ul>
         </li>
         <li>


Reply via email to