On Sun, 27 Jul 2025 07:56:59 GMT, fabioromano1 <[email protected]> wrote:
>> This PR implements nth root computation for BigIntegers using Newton method.
>
> fabioromano1 has updated the pull request incrementally with one additional
> commit since the last revision:
>
> A zero root's shift can't be excluded
src/java.base/share/classes/java/math/BigInteger.java line 2773:
> 2771: */
> 2772: public BigInteger nthRoot(int n) {
> 2773: return n == 1 ? this : (n == 2 ? sqrt() :
> nthRootAndRemainder(n, false)[0]);
I'm not a reviewer, but I noticed that inlining the `needRemainder`-flag into
the callers arguably yields clearer flow, obviates the "Assume n != 1 && n !=
2" javadoc and removes the array allocation for `nthRoot`:
public BigInteger nthRoot(int n) {
if (n == 1)
return this;
if (n == 2)
return sqrt();
checkNthRoot(n);
MutableBigInteger[] rootRem = new
MutableBigInteger(this.mag).nthRootRem(n);
return rootRem[0].toBigInteger(signum);
}
public BigInteger[] nthRootAndRemainder(int n) {
if (n == 1)
return new BigInteger[] { this, ZERO };
if (n == 2)
return sqrtAndRemainder();
checkNthRoot(n);
MutableBigInteger[] rootRem = new
MutableBigInteger(this.mag).nthRootRem(n);
return new BigInteger[] {
rootRem[0].toBigInteger(signum),
rootRem[1].toBigInteger(signum)
};
}
private static void checkNthRoot(int n) {
if (n <= 0)
throw new ArithmeticException("Non-positive root degree");
if ((n & 1) == 0 && this.signum < 0)
throw new ArithmeticException("Negative radicand with even root
degree");
}
What do you think?
-------------
PR Review Comment: https://git.openjdk.org/jdk/pull/24898#discussion_r2233863415