Hi Shawn,
Your images don't appear here. It seems they weren't attached to your e-mail? About serialization: I am still working on PEP 574 (*), which I hope will be integrated in Python 3.8. The standalone "pickle5" module is also available as a backport. Both Arrow and Numpy support it. You may get different pickle performance using it, especially on large data. (*) https://www.python.org/dev/peps/pep-0574/ Regards Antoine. Le 25/04/2019 à 05:19, Shawn Yang a écrit : > > Motivate > > We want to use arrow as a general data serialization framework in > distributed stream data processing. We are working on ray > <https://github.com/ray-project/ray>, written in c++ in low-level and > java/python in high-level. We want to transfer streaming data between > java/python/c++ efficiently. Arrow is a great framework for > cross-language data transfer. But it seems more appropriate for batch > columnar data. Is is appropriate for distributed stream data processing? > If not, will there be more support in stream data processing? Or is > there something I miss? > > > Benchmark > > 1. if use |UnionArray| > image.png > image.png > image.png > 2. If use |RecordBatch|, the batch size need to be greater than 50~200 > to have e better deserialization performance than pickle. But the > latency won't be acceptable in streaming. > image.png > > Seems neither is an appropriate way or is there a better way? > > > Benchmark code > > ''' > test arrow/pickle performance > ''' > import pickle > import pyarrow as pa > import matplotlib.pyplot as plt > import numpy as np > import timeit > import datetime > import copy > import os > from collections import OrderedDict > dir_path = os.path.dirname(os.path.realpath(__file__)) > > def benchmark_ser(batches, number=10): > pickle_results = [] > arrow_results = [] > pickle_sizes = [] > arrow_sizes = [] > for obj_batch in batches: > pickle_serialize = timeit.timeit( > lambda: pickle.dumps(obj_batch, protocol=pickle.HIGHEST_PROTOCOL), > number=number) > pickle_results.append(pickle_serialize) > pickle_sizes.append(len(pickle.dumps(obj_batch, > protocol=pickle.HIGHEST_PROTOCOL))) > arrow_serialize = timeit.timeit( > lambda: serialize_by_arrow_array(obj_batch), number=number) > arrow_results.append(arrow_serialize) > arrow_sizes.append(serialize_by_arrow_array(obj_batch).size) > return [pickle_results, arrow_results, pickle_sizes, arrow_sizes] > > def benchmark_deser(batches, number=10): > pickle_results = [] > arrow_results = [] > for obj_batch in batches: > serialized_obj = pickle.dumps(obj_batch, pickle.HIGHEST_PROTOCOL) > pickle_deserialize = timeit.timeit(lambda: > pickle.loads(serialized_obj), > number=number) > pickle_results.append(pickle_deserialize) > serialized_obj = serialize_by_arrow_array(obj_batch) > arrow_deserialize = timeit.timeit( > lambda: pa.deserialize(serialized_obj), number=number) > arrow_results.append(arrow_deserialize) > return [pickle_results, arrow_results] > > def serialize_by_arrow_array(obj_batch): > arrow_arrays = [pa.array(record) if not isinstance(record, pa.Array) else > record for record in obj_batch] > return pa.serialize(arrow_arrays).to_buffer() > > > plot_dir = '{}/{}'.format(dir_path, > datetime.datetime.now().strftime('%m%d_%H%M_%S')) > if not os.path.exists(plot_dir): > os.makedirs(plot_dir) > > def plot_time(pickle_times, arrow_times, batch_sizes, title, filename): > fig, ax = plt.subplots() > fig.set_size_inches(10, 8) > > bar_width = 0.35 > n_groups = len(batch_sizes) > index = np.arange(n_groups) > opacity = 0.6 > > plt.bar(index, pickle_times, bar_width, > alpha=opacity, color='r', label='Pickle') > > plt.bar(index + bar_width, arrow_times, bar_width, > alpha=opacity, color='c', label='Arrow') > > plt.title(title, fontweight='bold') > plt.ylabel('Time (seconds)', fontsize=10) > plt.xticks(index + bar_width / 2, batch_sizes, fontsize=10) > plt.legend(fontsize=10, bbox_to_anchor=(1, 1)) > plt.tight_layout() > plt.yticks(fontsize=10) > plt.savefig(plot_dir + '/plot-' + filename + '.png', format='png') > > > def plot_size(pickle_sizes, arrow_sizes, batch_sizes, title, filename): > fig, ax = plt.subplots() > fig.set_size_inches(10, 8) > > bar_width = 0.35 > n_groups = len(batch_sizes) > index = np.arange(n_groups) > opacity = 0.6 > > plt.bar(index, pickle_sizes, bar_width, > alpha=opacity, color='r', label='Pickle') > > plt.bar(index + bar_width, arrow_sizes, bar_width, > alpha=opacity, color='c', label='Arrow') > > plt.title(title, fontweight='bold') > plt.ylabel('Space (Byte)', fontsize=10) > plt.xticks(index + bar_width / 2, batch_sizes, fontsize=10) > plt.legend(fontsize=10, bbox_to_anchor=(1, 1)) > plt.tight_layout() > plt.yticks(fontsize=10) > plt.savefig(plot_dir + '/plot-' + filename + '.png', format='png') > > def get_union_obj(): > size = 200 > str_array = pa.array(['str-' + str(i) for i in range(size)]) > int_array = pa.array(np.random.randn(size).tolist()) > types = pa.array([0 for _ in range(size)]+[1 for _ in range(size)], > type=pa.int8()) > offsets = pa.array(list(range(size))+list(range(size)), type=pa.int32()) > union_arr = pa.UnionArray.from_dense(types, offsets, [str_array, > int_array]) > return union_arr > > test_objects_generater = [ > lambda: np.random.randn(500), > lambda: np.random.randn(500).tolist(), > lambda: get_union_obj() > ] > > titles = [ > 'numpy arrays', > 'list of ints', > 'union array of strings and ints' > ] > > def plot_benchmark(): > batch_sizes = list(OrderedDict.fromkeys(int(i) for i in np.geomspace(1, > 1000, num=25))) > for i in range(len(test_objects_generater)): > batches = [[test_objects_generater[i]() for _ in range(batch_size)] > for batch_size in batch_sizes] > ser_result = benchmark_ser(batches=batches) > plot_time(*ser_result[0:2], batch_sizes, 'serialization: ' + > titles[i], 'ser_time'+str(i)) > plot_size(*ser_result[2:], batch_sizes, 'serialization byte size: ' + > titles[i], 'ser_size'+str(i)) > deser = benchmark_deser(batches=batches) > plot_time(*deser, batch_sizes, 'deserialization: ' + titles[i], > 'deser_time-'+str(i)) > > > if __name__ == "__main__": > plot_benchmark() > > > Question > > So if i want to use arrow as data serialization framework in > distributed stream data processing, what's the right way? > Since streaming processing is a widespread scenario in data processing, > framework such as flink, spark structural streaming is becoming more and > more popular. Is there a possibility to add special support > for streaming processing in arrow, such that we can also benefit from > cross-language and efficient memory layout. > > > >