Hi Shawn,

So it seems that RecordBatch serialization is able to avoid copies,
otherwise there's no benefit to using Arrow over pickle.

Perhaps would you like to try and use pickle5 with out-of-band buffers
in your benchmark.  See https://pypi.org/project/pickle5/

Regards

Antoine.


Le 25/04/2019 à 11:23, Shawn Yang a écrit :
> Hi Antoine,
> Here are the images:
> 1. use |UnionArray| benchmark:
> https://user-images.githubusercontent.com/12445254/56651475-aaaea300-66bb-11e9-8b4f-4632e96bd079.png
> https://user-images.githubusercontent.com/12445254/56651484-b5693800-66bb-11e9-9b1f-d004212e6aac.png
> https://user-images.githubusercontent.com/12445254/56651490-b8fcbf00-66bb-11e9-8f01-ef4919b6af8b.png
> 2. use |RecordBatch|
> https://user-images.githubusercontent.com/12445254/56629689-c9437880-6680-11e9-8756-02acb47fdb30.png
> 
> Regards
> Shawn.
> 
> On Thu, Apr 25, 2019 at 4:03 PM Antoine Pitrou <anto...@python.org
> <mailto:anto...@python.org>> wrote:
> 
> 
>     Hi Shawn,
> 
>     Your images don't appear here.  It seems they weren't attached to your
>     e-mail?
> 
>     About serialization: I am still working on PEP 574 (*), which I hope
>     will be integrated in Python 3.8.  The standalone "pickle5" module is
>     also available as a backport.  Both Arrow and Numpy support it.  You may
>     get different pickle performance using it, especially on large data.
> 
>     (*) https://www.python.org/dev/peps/pep-0574/
> 
>     Regards
> 
>     Antoine.
> 
> 
>     Le 25/04/2019 à 05:19, Shawn Yang a écrit :
>     >
>     >     Motivate
>     >
>     > We want to use arrow as a general data serialization framework in
>     > distributed stream data processing. We are working on ray
>     > <https://github.com/ray-project/ray>, written in c++ in low-level and
>     > java/python in high-level. We want to transfer streaming data between
>     > java/python/c++ efficiently. Arrow is a great framework for
>     > cross-language data transfer. But it seems more appropriate for batch
>     > columnar data. Is is appropriate for distributed stream data
>     processing?
>     > If not, will there be more support in stream data processing? Or is
>     > there something I miss?
>     >
>     >
>     >     Benchmark
>     >
>     > 1. if use |UnionArray|
>     > image.png
>     > image.png
>     > image.png
>     > 2. If use |RecordBatch|, the batch size need to be greater than 50~200
>     > to have e better deserialization performance than pickle. But the
>     > latency won't be acceptable in streaming.
>     > image.png
>     >
>     > Seems neither is an appropriate way or is there a better way?
>     >
>     >
>     >     Benchmark code
>     >
>     > '''
>     > test arrow/pickle performance
>     > '''
>     > import pickle
>     > import pyarrow as pa
>     > import matplotlib.pyplot as plt
>     > import numpy as np
>     > import timeit
>     > import datetime
>     > import copy
>     > import os
>     > from collections import OrderedDict
>     > dir_path = os.path.dirname(os.path.realpath(__file__))
>     >
>     > def benchmark_ser(batches, number=10):
>     >     pickle_results = []
>     >     arrow_results = []
>     >     pickle_sizes = []
>     >     arrow_sizes = []
>     >     for obj_batch in batches:
>     >         pickle_serialize = timeit.timeit(
>     >             lambda: pickle.dumps(obj_batch,
>     protocol=pickle.HIGHEST_PROTOCOL),
>     >             number=number)
>     >         pickle_results.append(pickle_serialize)
>     >         pickle_sizes.append(len(pickle.dumps(obj_batch,
>     protocol=pickle.HIGHEST_PROTOCOL)))
>     >         arrow_serialize = timeit.timeit(
>     >             lambda: serialize_by_arrow_array(obj_batch),
>     number=number)
>     >         arrow_results.append(arrow_serialize)
>     >         arrow_sizes.append(serialize_by_arrow_array(obj_batch).size)
>     >     return [pickle_results, arrow_results, pickle_sizes, arrow_sizes]
>     >
>     > def benchmark_deser(batches, number=10):
>     >     pickle_results = []
>     >     arrow_results = []
>     >     for obj_batch in batches:
>     >         serialized_obj = pickle.dumps(obj_batch,
>     pickle.HIGHEST_PROTOCOL)
>     >         pickle_deserialize = timeit.timeit(lambda:
>     pickle.loads(serialized_obj),
>     >                                         number=number)
>     >         pickle_results.append(pickle_deserialize)
>     >         serialized_obj = serialize_by_arrow_array(obj_batch)
>     >         arrow_deserialize = timeit.timeit(
>     >             lambda: pa.deserialize(serialized_obj), number=number)
>     >         arrow_results.append(arrow_deserialize)
>     >     return [pickle_results, arrow_results]
>     >
>     > def serialize_by_arrow_array(obj_batch):
>     >     arrow_arrays = [pa.array(record) if not isinstance(record,
>     pa.Array) else record for record in obj_batch]
>     >     return pa.serialize(arrow_arrays).to_buffer()
>     >
>     >
>     > plot_dir = '{}/{}'.format(dir_path,
>     datetime.datetime.now().strftime('%m%d_%H%M_%S'))
>     > if not os.path.exists(plot_dir):
>     >     os.makedirs(plot_dir)
>     >
>     > def plot_time(pickle_times, arrow_times, batch_sizes, title,
>     filename):
>     >     fig, ax = plt.subplots()
>     >     fig.set_size_inches(10, 8)
>     >
>     >     bar_width = 0.35
>     >     n_groups = len(batch_sizes)
>     >     index = np.arange(n_groups)
>     >     opacity = 0.6
>     >
>     >     plt.bar(index, pickle_times, bar_width,
>     >             alpha=opacity, color='r', label='Pickle')
>     >
>     >     plt.bar(index + bar_width, arrow_times, bar_width,
>     >             alpha=opacity, color='c', label='Arrow')
>     >
>     >     plt.title(title, fontweight='bold')
>     >     plt.ylabel('Time (seconds)', fontsize=10)
>     >     plt.xticks(index + bar_width / 2, batch_sizes, fontsize=10)
>     >     plt.legend(fontsize=10, bbox_to_anchor=(1, 1))
>     >     plt.tight_layout()
>     >     plt.yticks(fontsize=10)
>     >     plt.savefig(plot_dir + '/plot-' + filename + '.png', format='png')
>     >
>     >
>     > def plot_size(pickle_sizes, arrow_sizes, batch_sizes, title,
>     filename):
>     >     fig, ax = plt.subplots()
>     >     fig.set_size_inches(10, 8)
>     >
>     >     bar_width = 0.35
>     >     n_groups = len(batch_sizes)
>     >     index = np.arange(n_groups)
>     >     opacity = 0.6
>     >
>     >     plt.bar(index, pickle_sizes, bar_width,
>     >             alpha=opacity, color='r', label='Pickle')
>     >
>     >     plt.bar(index + bar_width, arrow_sizes, bar_width,
>     >             alpha=opacity, color='c', label='Arrow')
>     >
>     >     plt.title(title, fontweight='bold')
>     >     plt.ylabel('Space (Byte)', fontsize=10)
>     >     plt.xticks(index + bar_width / 2, batch_sizes, fontsize=10)
>     >     plt.legend(fontsize=10, bbox_to_anchor=(1, 1))
>     >     plt.tight_layout()
>     >     plt.yticks(fontsize=10)
>     >     plt.savefig(plot_dir + '/plot-' + filename + '.png', format='png')
>     >
>     > def get_union_obj():
>     >     size = 200
>     >     str_array = pa.array(['str-' + str(i) for i in range(size)])
>     >     int_array = pa.array(np.random.randn(size).tolist())
>     >     types = pa.array([0 for _ in range(size)]+[1 for _ in
>     range(size)], type=pa.int8())
>     >     offsets = pa.array(list(range(size))+list(range(size)),
>     type=pa.int32())
>     >     union_arr = pa.UnionArray.from_dense(types, offsets,
>     [str_array, int_array])
>     >     return union_arr
>     >
>     > test_objects_generater = [
>     >     lambda: np.random.randn(500),
>     >     lambda: np.random.randn(500).tolist(),
>     >     lambda: get_union_obj()
>     > ]
>     >
>     > titles = [
>     >     'numpy arrays',
>     >     'list of ints',
>     >     'union array of strings and ints'
>     > ]
>     >
>     > def plot_benchmark():
>     >     batch_sizes = list(OrderedDict.fromkeys(int(i) for i in
>     np.geomspace(1, 1000, num=25)))
>     >     for i in range(len(test_objects_generater)):
>     >         batches = [[test_objects_generater[i]() for _ in
>     range(batch_size)] for batch_size in batch_sizes]
>     >         ser_result = benchmark_ser(batches=batches)
>     >         plot_time(*ser_result[0:2], batch_sizes, 'serialization: '
>     + titles[i], 'ser_time'+str(i))
>     >         plot_size(*ser_result[2:], batch_sizes, 'serialization
>     byte size: ' + titles[i], 'ser_size'+str(i))
>     >         deser = benchmark_deser(batches=batches)
>     >         plot_time(*deser, batch_sizes, 'deserialization: ' +
>     titles[i], 'deser_time-'+str(i))
>     >
>     >
>     > if __name__ == "__main__":
>     >     plot_benchmark()
>     >
>     >
>     >     Question
>     >
>     > So if i want to use arrow  as data serialization framework in
>     > distributed stream data processing, what's the right way?
>     > Since streaming processing is a widespread scenario in
>     data processing,
>     > framework such as flink, spark structural streaming is becoming
>     more and
>     > more popular. Is there a possibility to add special support
>     > for streaming processing in arrow, such that we can also benefit from
>     > cross-language and efficient memory layout.
>     >
>     >
>     >
>     >
> 

Reply via email to