What do you mean? I run the following test:
double[] design = new double[]{ 60323, 83.0, 234289, 2356, 1590, 107608, 1947, 61122, 88.5, 259426, 2325, 1456, 108632, 1948, 60171, 88.2, 258054, 3682, 1616, 109773, 1949, 61187, 89.5, 284599, 3351, 1650, 110929, 1950, 63221, 96.2, 328975, 2099, 3099, 112075, 1951, 63639, 98.1, 346999, 1932, 3594, 113270, 1952, 64989, 99.0, 365385, 1870, 3547, 115094, 1953, 63761, 100.0, 363112, 3578, 3350, 116219, 1954, 66019, 101.2, 397469, 2904, 3048, 117388, 1955, 67857, 104.6, 419180, 2822, 2857, 118734, 1956, 68169, 108.4, 442769, 2936, 2798, 120445, 1957, 66513, 110.8, 444546, 4681, 2637, 121950, 1958, 68655, 112.6, 482704, 3813, 2552, 123366, 1959, 69564, 114.2, 502601, 3931, 2514, 125368, 1960, 69331, 115.7, 518173, 4806, 2572, 127852, 1961, 70551, 116.9, 554894, 4007, 2827, 130081, 1962 }; final int nobs = 16; final int nvars = 6; // Estimate the model MillerUpdatingRegression model = new MillerUpdatingRegression(6, true, MathUtils.SAFE_MIN); int off = 0; double[] tmp = new double[6]; for (int i = 0; i < nobs; i++) { System.arraycopy(design, off + 1, tmp, 0, nvars); model.addObservation(tmp, design[off]); off += nvars + 1; } // Check expected beta values from NIST RegressionResults result = model.regress(); double[] betaHat = result.getParameterEstimates(); TestUtils.assertEquals(betaHat, new double[]{-3482258.63459582, 15.0618722713733, -0.358191792925910E-01, -2.02022980381683, -1.03322686717359, -0.511041056535807E-01, 1829.15146461355}, 1E-6); // The regression technique I am adding has parameters that are within 1.0e-6 of the certified values. OLSMultipleLinearRegressionTest is within 2.0e-8. On Mon, Jul 11, 2011 at 11:32 PM, Ted Dunning <ted.dunn...@gmail.com> wrote: > Can you point at code? > > On Mon, Jul 11, 2011 at 9:07 PM, Greg Sterijevski <gsterijev...@gmail.com > >wrote: > > > Yes, my apologies. I am a bit new to this. > > > > > > On Mon, Jul 11, 2011 at 10:59 PM, Henri Yandell <flame...@gmail.com> > > wrote: > > > > > I'm assuming this is Commons Math. I've added a [math] so it catches > > > the interest of those involved. > > > > > > > > > On Mon, Jul 11, 2011 at 8:52 PM, Greg Sterijevski > > > <gsterijev...@gmail.com> wrote: > > > > Additionally, I pass all of the Wampler beta estimates. > > > > > > > > On Mon, Jul 11, 2011 at 10:40 PM, Greg Sterijevski > > > > <gsterijev...@gmail.com>wrote: > > > > > > > >> Hello All, > > > >> > > > >> I am testing the first 'updating' ols regression algorithm. I ran it > > > >> through the Wampler1 data. It gets 1.0s for all of the beta > estimates. > > I > > > >> next ran the Longley dataset. I match, but with a tolerance of > 1.0e-6. > > > This > > > >> is a bit less than two orders of magnitude worse than the current > > incore > > > >> estimator( 2.0e-8). My question to the list, is how important is > this > > > diff? > > > >> Is it worth tearing things apart to figure out where the error is > > > >> accumulating? > > > >> > > > >> Thanks, > > > >> > > > >> -Greg > > > >> > > > > > > > > > > --------------------------------------------------------------------- > > > To unsubscribe, e-mail: dev-unsubscr...@commons.apache.org > > > For additional commands, e-mail: dev-h...@commons.apache.org > > > > > > > > >