> On 8 Nov 2019, at 22:57, Gilles Sadowski <gillese...@gmail.com> wrote:
> 
> Hi.
> 
>> [...]
>> 
>> commit 7b1b38167c9241462cd08578a37d63d5cd9b7a04
>> Author: Alex Herbert <aherb...@apache.org <mailto:aherb...@apache.org>>
>> AuthorDate: Fri Nov 8 20:28:15 2019 +0000
>> 
>>    Fix Javadoc using <code> tags.
> 
> IMO, the below should rather use MathJax.

I was removing <code> tags too enthusiastically and broke the javadoc. I just 
restored it to what was there before.

MathJax can be done in a big block for the whole class (when I have time).

> 
> Regards,
> Gilles
> 
>> ---
>> .../main/java/org/apache/commons/numbers/complex/Complex.java  | 10 
>> ++++++++++
>> 1 file changed, 10 insertions(+)
>> 
>> diff --git 
>> a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
>>  
>> b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
>> index 4cfc306..f3e4348 100644
>> --- 
>> a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
>> +++ 
>> b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
>> @@ -333,9 +333,11 @@ public final class Complex implements Serializable  {
>>      * {@code (this / divisor)}.
>>      * Implements the definitional formula
>>      * <pre>
>> +     * <code>
>>      *   a + bi     ac + bd + (bc - ad)i
>>      *   ------  =  --------------------
>>      *   c + di           c<sup>2</sup> + d<sup>2</sup>
>> +     * </code>
>>      * </pre>
>>      *
>>      * <p>Recalculates to recover infinities as specified in C.99
>> @@ -832,7 +834,9 @@ public final class Complex implements Serializable  {
>>      * inverse cosine</a> of this complex number.
>>      * Implements the formula:
>>      * <pre>
>> +     * <code>
>>      *   acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))
>> +     * </code>
>>      * </pre>
>>      *
>>      * @return the inverse cosine of this complex number.
>> @@ -871,7 +875,9 @@ public final class Complex implements Serializable  {
>>      * <a href="http://mathworld.wolfram.com/InverseSine.html";>
>>      * inverse sine</a> of this complex number.
>>      * <pre>
>> +     * <code>
>>      *   asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))
>> +     * </code>
>>      * </pre>
>>      *
>>      * <p>As per the C.99 standard this function is computed using the 
>> trigonomic identity:</p>
>> @@ -1231,7 +1237,9 @@ public final class Complex implements Serializable  {
>>      * Returns of value of this complex number raised to the power of {@code 
>> x}.
>>      * Implements the formula:
>>      * <pre>
>> +     * <code>
>>      *   y<sup>x</sup> = exp(x&middot;log(y))
>> +     * </code>
>>      * </pre>
>>      * where {@code exp} and {@code log} are {@link #exp} and
>>      * {@link #log}, respectively.
>> @@ -1534,7 +1542,9 @@ public final class Complex implements Serializable  {
>>      * Computes the n-th roots of this complex number.
>>      * The nth roots are defined by the formula:
>>      * <pre>
>> +     * <code>
>>      *   z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi 
>> + 2&pi;k/n))
>> +     * </code>
>>      * </pre>
>>      * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi}
>>      * are respectively the {@link #abs() modulus} and
>> 
> 
> ---------------------------------------------------------------------
> To unsubscribe, e-mail: dev-unsubscr...@commons.apache.org 
> <mailto:dev-unsubscr...@commons.apache.org>
> For additional commands, e-mail: dev-h...@commons.apache.org 
> <mailto:dev-h...@commons.apache.org>

Reply via email to