Hi.
Le sam. 9 nov. 2019 à 00:18, Alex Herbert <[email protected]> a écrit :
>
>
>
> > On 8 Nov 2019, at 22:57, Gilles Sadowski <[email protected]> wrote:
> >
> > Hi.
> >
> >> [...]
> >>
> >> commit 7b1b38167c9241462cd08578a37d63d5cd9b7a04
> >> Author: Alex Herbert <[email protected] <mailto:[email protected]>>
> >> AuthorDate: Fri Nov 8 20:28:15 2019 +0000
> >>
> >> Fix Javadoc using <code> tags.
> >
> > IMO, the below should rather use MathJax.
>
> I was removing <code> tags too enthusiastically and broke the javadoc. I just
> restored it to what was there before.
>
> MathJax can be done in a big block for the whole class (when I have time).
Just an improvement; nothing urgent. Could be done after the release.
Regards,
Gilles
> >> ---
> >> .../main/java/org/apache/commons/numbers/complex/Complex.java | 10
> >> ++++++++++
> >> 1 file changed, 10 insertions(+)
> >>
> >> diff --git
> >> a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
> >>
> >> b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
> >> index 4cfc306..f3e4348 100644
> >> ---
> >> a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
> >> +++
> >> b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
> >> @@ -333,9 +333,11 @@ public final class Complex implements Serializable {
> >> * {@code (this / divisor)}.
> >> * Implements the definitional formula
> >> * <pre>
> >> + * <code>
> >> * a + bi ac + bd + (bc - ad)i
> >> * ------ = --------------------
> >> * c + di c<sup>2</sup> + d<sup>2</sup>
> >> + * </code>
> >> * </pre>
> >> *
> >> * <p>Recalculates to recover infinities as specified in C.99
> >> @@ -832,7 +834,9 @@ public final class Complex implements Serializable {
> >> * inverse cosine</a> of this complex number.
> >> * Implements the formula:
> >> * <pre>
> >> + * <code>
> >> * acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))
> >> + * </code>
> >> * </pre>
> >> *
> >> * @return the inverse cosine of this complex number.
> >> @@ -871,7 +875,9 @@ public final class Complex implements Serializable {
> >> * <a href="http://mathworld.wolfram.com/InverseSine.html">
> >> * inverse sine</a> of this complex number.
> >> * <pre>
> >> + * <code>
> >> * asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))
> >> + * </code>
> >> * </pre>
> >> *
> >> * <p>As per the C.99 standard this function is computed using the
> >> trigonomic identity:</p>
> >> @@ -1231,7 +1237,9 @@ public final class Complex implements Serializable {
> >> * Returns of value of this complex number raised to the power of
> >> {@code x}.
> >> * Implements the formula:
> >> * <pre>
> >> + * <code>
> >> * y<sup>x</sup> = exp(x·log(y))
> >> + * </code>
> >> * </pre>
> >> * where {@code exp} and {@code log} are {@link #exp} and
> >> * {@link #log}, respectively.
> >> @@ -1534,7 +1542,9 @@ public final class Complex implements Serializable {
> >> * Computes the n-th roots of this complex number.
> >> * The nth roots are defined by the formula:
> >> * <pre>
> >> + * <code>
> >> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i
> >> (sin(phi + 2πk/n))
> >> + * </code>
> >> * </pre>
> >> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code
> >> phi}
> >> * are respectively the {@link #abs() modulus} and
> >>
> >
> > ---------------------------------------------------------------------
> > To unsubscribe, e-mail: [email protected]
> > <mailto:[email protected]>
> > For additional commands, e-mail: [email protected]
> > <mailto:[email protected]>
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]