[ https://issues.apache.org/jira/browse/HIVE-7540?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14085786#comment-14085786 ]
Sandy Ryza commented on HIVE-7540: ---------------------------------- In general a Spark closure is a Serializable object. The proposal would be to allow objects underneath this object to be Writable, but not Serializable. I'm not aware of a way to tell Java serialization to listen for objects that implement a certain type as it navigates the object graph and use a custom serialization for them. I'm looking at the RangePartitioner code now and it might be possible to use custom serialization for the range bounds. I just don't see a way to do it in the general case. > NotSerializableException encountered when using sortByKey transformation > ------------------------------------------------------------------------ > > Key: HIVE-7540 > URL: https://issues.apache.org/jira/browse/HIVE-7540 > Project: Hive > Issue Type: Bug > Components: Spark > Environment: Spark-1.0.1 > Reporter: Rui Li > > This exception is thrown when sortByKey is used as the shuffle transformation > between MapWork and ReduceWork: > {quote} > org.apache.spark.SparkException: Job aborted due to stage failure: Task not > serializable: java.io.NotSerializableException: > org.apache.hadoop.io.BytesWritable > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031) > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:772) > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:715) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:719) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:718) > at scala.collection.immutable.List.foreach(List.scala:318) > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:718) > at > org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:699) > … > {quote} > The root cause is that the RangePartitioner used by sortByKey contains > rangeBounds: Array[BytesWritable], which is considered not serializable in > spark. > A workaround to this issue is to set the number of partitions to 1 when > calling sortByKey, in which case the rangeBounds will be just an empty array. > NO PRECOMMIT TESTS. This is for spark branch only. -- This message was sent by Atlassian JIRA (v6.2#6252)