[ 
https://issues.apache.org/jira/browse/HIVE-7540?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14085821#comment-14085821
 ] 

Brock Noland commented on HIVE-7540:
------------------------------------

Thanks Sandy. For the specific RangePartitioner case, I think we could use 
writeObject/readObject which are [optional 
methods|http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html] 
Serializable's can implement.

If the number of cases where we need to serialize a writable via java 
serialization is small, then providing point solutions using 
writeObject/readObject in RangePartitioner might be a reasonable fix. If anyone 
has a feeling for the number of times we will end up hitting this, please speak 
up. In the absence of more information, I would suggest we work around this 
issue on the Hive side and then once we've gathered more information (how many 
times we need to serialize a writable in a closure, performance impact, etc) we 
can decide on how to proceed.

> NotSerializableException encountered when using sortByKey transformation
> ------------------------------------------------------------------------
>
>                 Key: HIVE-7540
>                 URL: https://issues.apache.org/jira/browse/HIVE-7540
>             Project: Hive
>          Issue Type: Bug
>          Components: Spark
>         Environment: Spark-1.0.1
>            Reporter: Rui Li
>
> This exception is thrown when sortByKey is used as the shuffle transformation 
> between MapWork and ReduceWork:
> {quote}
> org.apache.spark.SparkException: Job aborted due to stage failure: Task not 
> serializable: java.io.NotSerializableException: 
> org.apache.hadoop.io.BytesWritable
>     at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031)
>     at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>     at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031)
>     at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:772)
>     at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:715)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:719)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:718)
>     at scala.collection.immutable.List.foreach(List.scala:318)
>     at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:718)
>     at 
> org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:699)
> …
> {quote}
>  The root cause is that the RangePartitioner used by sortByKey contains 
> rangeBounds: Array[BytesWritable], which is considered not serializable in 
> spark.
> A workaround to this issue is to set the number of partitions to 1 when 
> calling sortByKey, in which case the rangeBounds will be just an empty array.
> NO PRECOMMIT TESTS. This is for spark branch only.



--
This message was sent by Atlassian JIRA
(v6.2#6252)

Reply via email to