Hi Jun,

Basically you are saying streaming path leaves some inflights behind.. let
me see if I can reproduce it. If you have a simple test case, please share

Thanks
Vinoth

On Tue, Apr 30, 2019 at 1:04 AM Jun Zhu <[email protected]> wrote:

> Hi Vinoth,
> In spark streaming log I find "2019-04-30 03:26:11 ERROR
> HoodieSparkSQLWriter:182 - insert failed with 1 errors :"(no continue error
> logs) , during which commit end with inflight and not cleaned.
> Just for feedback, we can dedup data correctly in batch way. Should add
> more logic for exception handling if using spark stream I think.
> Regards,
> Jun
>
>
> On Tue, Apr 30, 2019 at 2:46 AM Vinoth Chandar <[email protected]> wrote:
>
> > Another option to try would be setting the
> > spark.sql.hive.convertMetastoreParquet=false, if you are querying via the
> > Hive table registered by Hudi.
> >
> > On Sat, Apr 27, 2019 at 7:02 PM Jun Zhu <[email protected]>
> > wrote:
> >
> > > Thanks for explanation vinoth, code was same list in
> > > https://github.com/apache/incubator-hudi/issues/639, with setting
> table
> > > format to `.option(DataSourceWriteOptions.STORAGE_TYPE_OPT_KEY,
> > > DataSourceWriteOptions.MOR_STORAGE_TYPE_OPT_VAL)`.
> > > And the result data was stored on aws s3.
> > > I will try more on
> > >
> > >
> >
> `spark.sparkContext.hadoopConfiguration.setClass("mapreduce.input.pathFilter.class",
> > > classOf[com.uber.hoodie.hadoop.HoodieROTablePathFilter],
> > > classOf[org.apache.hadoop.fs.PathFilter]);`  from the phenomenon, the
> > > config did not take effects maybe.
> > >
> > > On Sat, Apr 27, 2019 at 12:09 AM Vinoth Chandar <[email protected]>
> > wrote:
> > >
> > > > Hi,
> > > >
> > > > >>The duplicates was found in inflight commit parquet files.
> Wondering
> > if
> > > > this was expected?
> > > > Spark shell should not even be reading in-flight parquet files. Can
> you
> > > > double check if the spark access is properly configured?
> > > > http://hudi.apache.org/querying_data.html#spark
> > > >
> > > > Inflight should be rolled back at the start of the next commit/delta
> > > > commit.. Not sure why there are so many inflight delta commits.
> > > > If you can give a reproducible case, happy to debug it more..
> > > >
> > > > Only complete instants are archived.. So yes, inflight is not
> > archived..
> > > >
> > > > Hope that helps
> > > >
> > > > Thanks
> > > > Vinoth
> > > >
> > > > On Fri, Apr 26, 2019 at 2:09 AM Jun Zhu <[email protected]>
> > > > wrote:
> > > >
> > > > > Hi Vinoth,
> > > > > Some continue question about this thread.
> > > > > Here is what I found after running a few days:
> > > > > in .hoodie folder, due to retain policy maybe, there is an
> obviously
> > > > > line(list in the end of email). Before it the cleaned commit was
> > > > archived,
> > > > > find duplication when query inflight commit correspond partition by
> > > > > spark-shell. After the line, all behave normal, global dedup works.
> > > > > The duplicates was found in inflight commit parquet files.
> Wondering
> > if
> > > > > this was expected?
> > > > > Q:
> > > > > 1.  The inflight commit should be turned to roll back status in
> next
> > > > > writes. Is it normal that so many inflight commit did not make it?
> Or
> > > > can I
> > > > > config a retain policy to turn inflight to roll_back in another
> way?
> > > > > 2. Did commit retain policy do not archive inflight commit?
> > > > >
> > > > > 2019-04-23 20:23:47        378 20190423122339.deltacommit.inflight
> > > > >
> > > > > 2019-04-23 20:43:53        378 20190423124343.deltacommit.inflight
> > > > >
> > > > > 2019-04-23 22:14:04        378 20190423141354.deltacommit.inflight
> > > > >
> > > > > 2019-04-23 22:44:09        378 20190423144400.deltacommit.inflight
> > > > >
> > > > > 2019-04-23 22:54:18        378 20190423145408.deltacommit.inflight
> > > > >
> > > > > 2019-04-23 23:04:09        378 20190423150400.deltacommit.inflight
> > > > >
> > > > > 2019-04-23 23:24:30        378 20190423152421.deltacommit.inflight
> > > > >
> > > > > *2019-04-23 23:44:34        378
> 20190423154424.deltacommit.inflight*
> > > > >
> > > > > *2019-04-24 00:15:46       2991 20190423161431.clean*
> > > > >
> > > > > 2019-04-24 00:15:21     870536 20190423161431.deltacommit
> > > > >
> > > > > 2019-04-24 00:25:19       2991 20190423162424.clean
> > > > >
> > > > > 2019-04-24 00:25:09     875825 20190423162424.deltacommit
> > > > >
> > > > > 2019-04-24 00:35:26       2991 20190423163429.clean
> > > > >
> > > > > 2019-04-24 00:35:18     881925 20190423163429.deltacommit
> > > > >
> > > > > 2019-04-24 00:46:14       2991 20190423164428.clean
> > > > >
> > > > > 2019-04-24 00:45:44     888025 20190423164428.deltacommit
> > > > >
> > > > > Thanks,
> > > > > Jun
> > > > >
> > > > > On 2019/04/18 14:29:23, Vinoth Chandar <[email protected]> wrote:
> > > > > > Hi Jun,>
> > > > > >
> > > > > > Responses below.>
> > > > > >
> > > > > > >>1. Some file inflight may never reach commit?>
> > > > > > yes. the next attempt at writing will first issue a rollback to
> > clean
> > > > up>
> > > > > > such partial/leftover files first, before it begins the new
> > commit.>
> > > > > >
> > > > > > >>2. In occasion which inflight and parquet file generated by
> > > inflight
> > > > > still>
> > > > > > exists,  the global dedup will not dedup based on such kind
> file?>
> > > > > > even if not rolled back, we check for the inflight parquet files
> > > > against>
> > > > > > the committed timeline, which it wont be a part of. So should be
> > > safe.>
> > > > > >
> > > > > >
> > > > > > >>3. In occasion which inflight and parquet file generated by
> > > inflight
> > > > > still>
> > > > > > exists,  the correct query result will be decided by read
> config(I>
> > > > > > mean mapreduce.input.pathFilter.class>
> > > > > > in sparksql)>
> > > > > > yes. the filtering should work as well. its the same technique
> used
> > > by>
> > > > > > writer.>
> > > > > >
> > > > > >
> > > > > > >>4. Is there any way we can use>
> > > > > >
> > > > > > >>
> > > > > >
> > > > >
> > > > >
> > > >
> > >
> >
> spark.sparkContext.hadoopConfiguration.setClass("mapreduce.input.pathFilter.class",>
> > > > >
> > > > > > > classOf[com.uber.hoodie.hadoop.HoodieROTablePathFilter],>
> > > > > > > classOf[org.apache.hadoop.fs.PathFilter]);>
> > > > > >
> > > > > > in spark thrift server when start it?>
> > > > > >
> > > > > > I am not familiar with the Spark thrift server myself. Any
> pointers
> > > > where
> > > > > I>
> > > > > > can learn more?>
> > > > > > Two suggestions :>
> > > > > > - You can check if you can add this to the Hadoop configuration
> xml
> > > > > files>
> > > > > > and see if it gets picked up by Spark?>
> > > > > > - Alternatively, you can set the spark config mentioned here>
> > > > > > http://hudi.apache.org/querying_data.html#spark-rt-view (works
> for
> > > ro
> > > > > view>
> > > > > > also), which should be doable I am assuming at this thrift
> server>
> > > > > >
> > > > > >
> > > > > > Thanks>
> > > > > > Vinoth>
> > > > > >
> > > > > >
> > > > > > On Wed, Apr 17, 2019 at 12:08 AM Jun Zhu
> <[email protected]
> > >
> > > > > wrote:>
> > > > > >
> > > > > > > Hi,>
> > > > > > > Link: https://github.com/apache/incubator-hudi/issues/639>
> > > > > > > Sorry , failed open
> > > > > https://lists.apache.org/[email protected]>
> > > > > > > .>
> > > > > > > I have some follow up questions for issue 639:>
> > > > > > >>
> > > > > > > So, the sequence of events is . We write parquet files and then
> > > upon>
> > > > > > > > successful writing of all attempted parquet files, we
> actually
> > > make
> > > > > the>
> > > > > > > > commit as completed. (i.e not inflight anymore). So this is
> > > normal.
> > > > > This>
> > > > > > > is>
> > > > > > > > done to prevent queries from reading partially written
> parquet
> > > > > files..>
> > > > > > > >>
> > > > > > >>
> > > > > > > Does that mean:>
> > > > > > > 1. Some file inflight may never reach commit?>
> > > > > > > 2. In occasion which inflight and parquet file generated by
> > > inflight
> > > > > still>
> > > > > > > exists,  the global dedup will not dedup based on such kind
> > file?>
> > > > > > > 3. In occasion which inflight and parquet file generated by
> > > inflight
> > > > > still>
> > > > > > > exists,  the correct query result will be decided by read
> > config(I>
> > > > > > > mean mapreduce.input.pathFilter.class>
> > > > > > > in sparksql)>
> > > > > > > 4. Is there any way we can use>
> > > > > > >>
> > > > > > > >>
> > > > > > >
> > > > >
> > > > >
> > > >
> > >
> >
> spark.sparkContext.hadoopConfiguration.setClass("mapreduce.input.pathFilter.class",>
> > > > >
> > > > > > > > classOf[com.uber.hoodie.hadoop.HoodieROTablePathFilter],>
> > > > > > > > classOf[org.apache.hadoop.fs.PathFilter]);>
> > > > > > >>
> > > > > > > in spark thrift server when start it?>
> > > > > > >>
> > > > > > > Best,>
> > > > > > > -->
> > > > > > > [image: vshapesaqua11553186012.gif] <https://vungle.com/>
>  *Jun
> > > > Zhu*>
> > > > > > > Sr. Engineer I, Data>
> > > > > > > +86 18565739171>
> > > > > > >>
> > > > > > > [image: in1552694272.png] <
> > https://www.linkedin.com/company/vungle
> > > >>
> > > > > > > [image:>
> > > > > > > fb1552694203.png] <https://facebook.com/vungle>      [image:>
> > > > > > > tw1552694330.png] <https://twitter.com/vungle>      [image:>
> > > > > > > ig1552694392.png] <https://www.instagram.com/vungle>>
> > > > > > > Units 3801, 3804, 38F, C Block, Beijing Yintai Center, Beijing,
> > > > China>
> > > > > > >>
> > > > > >
> > > > >
> > > >
> > >
> > >
> > > --
> > > [image: vshapesaqua11553186012.gif] <https://vungle.com/>   *Jun Zhu*
> > > Sr. Engineer I, Data
> > > +86 18565739171
> > >
> > > [image: in1552694272.png] <https://www.linkedin.com/company/vungle>
> > > [image:
> > > fb1552694203.png] <https://facebook.com/vungle>      [image:
> > > tw1552694330.png] <https://twitter.com/vungle>      [image:
> > > ig1552694392.png] <https://www.instagram.com/vungle>
> > > Units 3801, 3804, 38F, C Block, Beijing Yintai Center, Beijing, China
> > >
> >
>
>
> --
> [image: vshapesaqua11553186012.gif] <https://vungle.com/>   *Jun Zhu*
> Sr. Engineer I, Data
> +86 18565739171
>
> [image: in1552694272.png] <https://www.linkedin.com/company/vungle>
> [image:
> fb1552694203.png] <https://facebook.com/vungle>      [image:
> tw1552694330.png] <https://twitter.com/vungle>      [image:
> ig1552694392.png] <https://www.instagram.com/vungle>
> Units 3801, 3804, 38F, C Block, Beijing Yintai Center, Beijing, China
>

Reply via email to