Yes, fixed

On Thu, May 9, 2019 at 6:13 AM Vinoth Chandar <[email protected]> wrote:

> Images don't render on the mailing list. :(
> Seems like  the issue if fixed now?
>
> On Tue, May 7, 2019 at 10:15 PM Jun Zhu <[email protected]>
> wrote:
>
> > Hi,
> > I run the new code pull from master branch, and compare with another
> > stream job which run hudi 0.4.5 on maven. Both running per 10 minutes.
> > The roll-back worked.
> > Top is 0.4.5, bottom is 0.4.6
> > [image: Screen Shot 2019-05-08 at 1.06.17 PM.png]
> > [image: Screen Shot 2019-05-08 at 1.06.54 PM.png]
> > And about log, I rewrite the log.trace to log.error to avoid log explode
> > with trace.
> > And There is nothing in variable:
> >
> >> 19/05/07 06:30:36 ERROR HoodieSparkSQLWriter: insert failed with 1
> errors
> >> :
> >> 19/05/07 06:30:36 ERROR HoodieSparkSQLWriter: Printing out the top 100
> >> errors
> >> ....spark log....
> >> 19/05/07 06:30:36 ERROR HoodieSparkSQLWriter: Global error :
> >> .....spark log....
> >> 19/05/07 07:10:40 ERROR HoodieSparkSQLWriter: insert failed with 1
> errors
> >> :
> >> 19/05/07 07:10:40 ERROR HoodieSparkSQLWriter: Printing out the top 100
> >> errors
> >
> >
> > Thanks,
> > Jun
> >
> > On Sat, May 4, 2019 at 11:31 AM Vinoth Chandar <[email protected]>
> wrote:
> >
> >> No worries. This just landed on master, you can give it a shot. You ll
> >> also
> >> end up picking up interval tree based filtering for global index, which
> >> will speed things along a lot. Fyi
> >>
> >> Have a good holiday!
> >>
> >> Thanks
> >> Vinoth
> >>
> >> On Fri, May 3, 2019 at 7:19 PM Jun Zhu <[email protected]>
> >> wrote:
> >>
> >> > Hi team,
> >> > i will try that, thank you so much, sorry for late reply, just have a
> >> > holiday in china😅.
> >> > Thanks
> >> > Jun
> >> >
> >> > On Wed, May 1, 2019 at 7:08 PM Vinoth Chandar <[email protected]>
> >> wrote:
> >> >
> >> > > Hi Jun,
> >> > >
> >> > > I was able to track that the HoodieSparkSQLWriter (common path for
> >> > > streaming sink and batch datasource) ends up calling
> >> > > DataSourceUtils.createHoodieClient, which creates the client as
> >> follows
> >> > >
> >> > > return new HoodieWriteClient<>(jssc, writeConfig);
> >> > >
> >> > > There is a third parameter that denotes whether the writer needs to
> >> > > rollback inflights. For e.g, DeltaStreamer invokes
> >> > >
> >> > > HoodieWriteClient client = new HoodieWriteClient<>(jssc, hoodieCfg,
> >> > true);
> >> > >
> >> > > While I trace down why we had this difference, could you try
> changing
> >> > this
> >> > > one line here, and add third "true" argument and give it a shot.
> >> > >
> >> > >
> >> >
> >>
> https://github.com/apache/incubator-hudi/blob/b34a204a527a156406908686e54484a0c3d8a3d7/hoodie-spark/src/main/java/com/uber/hoodie/DataSourceUtils.java#L148
> >> > >
> >> > >
> >> > > Thanks
> >> > > Vinoth
> >> > >
> >> > > On Tue, Apr 30, 2019 at 11:16 PM [email protected] <
> >> [email protected]>
> >> > > wrote:
> >> > >
> >> > > >
> >> > > > Hi Jun,
> >> > > > You had mentioned that you are seeing the log message
> >> > > >  "insert failed with 1 errors"
> >> > > > Did you see any exception stack traces before this message. You
> can
> >> > also
> >> > > > take a look at spark UI to see if stdout/stderr of failed tasks
> (if
> >> > > > present).
> >> > > > Also, it looks like if you also enable "trace" level logging, you
> >> would
> >> > > > see exceptions getting logged at the end. So, enabling "trace"
> level
> >> > > > logging is another way to debug what is happening.
> >> > > > '''log.error(s"$operation failed with ${errorCount} errors :");
> >> > > > if (log.isTraceEnabled) {
> >> > > >   log.trace("Printing out the top 100 errors")     .......
> >> > > > '''
> >> > > > Balaji.V
> >> > > >
> >> > > >     On Tuesday, April 30, 2019, 8:17:57 AM PDT, Vinoth Chandar <
> >> > > > [email protected]> wrote:
> >> > > >
> >> > > >  Hi Jun,
> >> > > >
> >> > > > Basically you are saying streaming path leaves some inflights
> >> behind..
> >> > > let
> >> > > > me see if I can reproduce it. If you have a simple test case,
> please
> >> > > share
> >> > > >
> >> > > > Thanks
> >> > > > Vinoth
> >> > > >
> >> > > > On Tue, Apr 30, 2019 at 1:04 AM Jun Zhu
> <[email protected]
> >> >
> >> > > > wrote:
> >> > > >
> >> > > > > Hi Vinoth,
> >> > > > > In spark streaming log I find "2019-04-30 03:26:11 ERROR
> >> > > > > HoodieSparkSQLWriter:182 - insert failed with 1 errors :"(no
> >> continue
> >> > > > error
> >> > > > > logs) , during which commit end with inflight and not cleaned.
> >> > > > > Just for feedback, we can dedup data correctly in batch way.
> >> Should
> >> > add
> >> > > > > more logic for exception handling if using spark stream I think.
> >> > > > > Regards,
> >> > > > > Jun
> >> > > > >
> >> > > > >
> >> > > > > On Tue, Apr 30, 2019 at 2:46 AM Vinoth Chandar <
> [email protected]
> >> >
> >> > > > wrote:
> >> > > > >
> >> > > > > > Another option to try would be setting the
> >> > > > > > spark.sql.hive.convertMetastoreParquet=false, if you are
> >> querying
> >> > via
> >> > > > the
> >> > > > > > Hive table registered by Hudi.
> >> > > > > >
> >> > > > > > On Sat, Apr 27, 2019 at 7:02 PM Jun Zhu
> >> <[email protected]
> >> > >
> >> > > > > > wrote:
> >> > > > > >
> >> > > > > > > Thanks for explanation vinoth, code was same list in
> >> > > > > > > https://github.com/apache/incubator-hudi/issues/639, with
> >> > setting
> >> > > > > table
> >> > > > > > > format to
> >> `.option(DataSourceWriteOptions.STORAGE_TYPE_OPT_KEY,
> >> > > > > > > DataSourceWriteOptions.MOR_STORAGE_TYPE_OPT_VAL)`.
> >> > > > > > > And the result data was stored on aws s3.
> >> > > > > > > I will try more on
> >> > > > > > >
> >> > > > > > >
> >> > > > > >
> >> > > > >
> >> > > >
> >> > >
> >> >
> >>
> `spark.sparkContext.hadoopConfiguration.setClass("mapreduce.input.pathFilter.class",
> >> > > > > > > classOf[com.uber.hoodie.hadoop.HoodieROTablePathFilter],
> >> > > > > > > classOf[org.apache.hadoop.fs.PathFilter]);`  from the
> >> phenomenon,
> >> > > the
> >> > > > > > > config did not take effects maybe.
> >> > > > > > >
> >> > > > > > > On Sat, Apr 27, 2019 at 12:09 AM Vinoth Chandar <
> >> > [email protected]
> >> > > >
> >> > > > > > wrote:
> >> > > > > > >
> >> > > > > > > > Hi,
> >> > > > > > > >
> >> > > > > > > > >>The duplicates was found in inflight commit parquet
> files.
> >> > > > > Wondering
> >> > > > > > if
> >> > > > > > > > this was expected?
> >> > > > > > > > Spark shell should not even be reading in-flight parquet
> >> files.
> >> > > Can
> >> > > > > you
> >> > > > > > > > double check if the spark access is properly configured?
> >> > > > > > > > http://hudi.apache.org/querying_data.html#spark
> >> > > > > > > >
> >> > > > > > > > Inflight should be rolled back at the start of the next
> >> > > > commit/delta
> >> > > > > > > > commit.. Not sure why there are so many inflight delta
> >> commits.
> >> > > > > > > > If you can give a reproducible case, happy to debug it
> >> more..
> >> > > > > > > >
> >> > > > > > > > Only complete instants are archived.. So yes, inflight is
> >> not
> >> > > > > > archived..
> >> > > > > > > >
> >> > > > > > > > Hope that helps
> >> > > > > > > >
> >> > > > > > > > Thanks
> >> > > > > > > > Vinoth
> >> > > > > > > >
> >> > > > > > > > On Fri, Apr 26, 2019 at 2:09 AM Jun Zhu
> >> > > <[email protected]
> >> > > > >
> >> > > > > > > > wrote:
> >> > > > > > > >
> >> > > > > > > > > Hi Vinoth,
> >> > > > > > > > > Some continue question about this thread.
> >> > > > > > > > > Here is what I found after running a few days:
> >> > > > > > > > > in .hoodie folder, due to retain policy maybe, there is
> an
> >> > > > > obviously
> >> > > > > > > > > line(list in the end of email). Before it the cleaned
> >> commit
> >> > > was
> >> > > > > > > > archived,
> >> > > > > > > > > find duplication when query inflight commit correspond
> >> > > partition
> >> > > > by
> >> > > > > > > > > spark-shell. After the line, all behave normal, global
> >> dedup
> >> > > > works.
> >> > > > > > > > > The duplicates was found in inflight commit parquet
> files.
> >> > > > > Wondering
> >> > > > > > if
> >> > > > > > > > > this was expected?
> >> > > > > > > > > Q:
> >> > > > > > > > > 1.  The inflight commit should be turned to roll back
> >> status
> >> > in
> >> > > > > next
> >> > > > > > > > > writes. Is it normal that so many inflight commit did
> not
> >> > make
> >> > > > it?
> >> > > > > Or
> >> > > > > > > > can I
> >> > > > > > > > > config a retain policy to turn inflight to roll_back in
> >> > another
> >> > > > > way?
> >> > > > > > > > > 2. Did commit retain policy do not archive inflight
> >> commit?
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-23 20:23:47        378
> >> > > > 20190423122339.deltacommit.inflight
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-23 20:43:53        378
> >> > > > 20190423124343.deltacommit.inflight
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-23 22:14:04        378
> >> > > > 20190423141354.deltacommit.inflight
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-23 22:44:09        378
> >> > > > 20190423144400.deltacommit.inflight
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-23 22:54:18        378
> >> > > > 20190423145408.deltacommit.inflight
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-23 23:04:09        378
> >> > > > 20190423150400.deltacommit.inflight
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-23 23:24:30        378
> >> > > > 20190423152421.deltacommit.inflight
> >> > > > > > > > >
> >> > > > > > > > > *2019-04-23 23:44:34        378
> >> > > > > 20190423154424.deltacommit.inflight*
> >> > > > > > > > >
> >> > > > > > > > > *2019-04-24 00:15:46      2991 20190423161431.clean*
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-24 00:15:21    870536 20190423161431.deltacommit
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-24 00:25:19      2991 20190423162424.clean
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-24 00:25:09    875825 20190423162424.deltacommit
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-24 00:35:26      2991 20190423163429.clean
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-24 00:35:18    881925 20190423163429.deltacommit
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-24 00:46:14      2991 20190423164428.clean
> >> > > > > > > > >
> >> > > > > > > > > 2019-04-24 00:45:44    888025 20190423164428.deltacommit
> >> > > > > > > > >
> >> > > > > > > > > Thanks,
> >> > > > > > > > > Jun
> >> > > > > > > > >
> >> > > > > > > > > On 2019/04/18 14:29:23, Vinoth Chandar <[email protected]
> >
> >> > > wrote:
> >> > > > > > > > > > Hi Jun,>
> >> > > > > > > > > >
> >> > > > > > > > > > Responses below.>
> >> > > > > > > > > >
> >> > > > > > > > > > >>1. Some file inflight may never reach commit?>
> >> > > > > > > > > > yes. the next attempt at writing will first issue a
> >> > rollback
> >> > > to
> >> > > > > > clean
> >> > > > > > > > up>
> >> > > > > > > > > > such partial/leftover files first, before it begins
> the
> >> new
> >> > > > > > commit.>
> >> > > > > > > > > >
> >> > > > > > > > > > >>2. In occasion which inflight and parquet file
> >> generated
> >> > by
> >> > > > > > > inflight
> >> > > > > > > > > still>
> >> > > > > > > > > > exists,  the global dedup will not dedup based on such
> >> kind
> >> > > > > file?>
> >> > > > > > > > > > even if not rolled back, we check for the inflight
> >> parquet
> >> > > > files
> >> > > > > > > > against>
> >> > > > > > > > > > the committed timeline, which it wont be a part of. So
> >> > should
> >> > > > be
> >> > > > > > > safe.>
> >> > > > > > > > > >
> >> > > > > > > > > >
> >> > > > > > > > > > >>3. In occasion which inflight and parquet file
> >> generated
> >> > by
> >> > > > > > > inflight
> >> > > > > > > > > still>
> >> > > > > > > > > > exists,  the correct query result will be decided by
> >> read
> >> > > > > config(I>
> >> > > > > > > > > > mean mapreduce.input.pathFilter.class>
> >> > > > > > > > > > in sparksql)>
> >> > > > > > > > > > yes. the filtering should work as well. its the same
> >> > > technique
> >> > > > > used
> >> > > > > > > by>
> >> > > > > > > > > > writer.>
> >> > > > > > > > > >
> >> > > > > > > > > >
> >> > > > > > > > > > >>4. Is there any way we can use>
> >> > > > > > > > > >
> >> > > > > > > > > > >>
> >> > > > > > > > > >
> >> > > > > > > > >
> >> > > > > > > > >
> >> > > > > > > >
> >> > > > > > >
> >> > > > > >
> >> > > > >
> >> > > >
> >> > >
> >> >
> >>
> spark.sparkContext.hadoopConfiguration.setClass("mapreduce.input.pathFilter.class",>
> >> > > > > > > > >
> >> > > > > > > > > > >
> >> classOf[com.uber.hoodie.hadoop.HoodieROTablePathFilter],>
> >> > > > > > > > > > > classOf[org.apache.hadoop.fs.PathFilter]);>
> >> > > > > > > > > >
> >> > > > > > > > > > in spark thrift server when start it?>
> >> > > > > > > > > >
> >> > > > > > > > > > I am not familiar with the Spark thrift server myself.
> >> Any
> >> > > > > pointers
> >> > > > > > > > where
> >> > > > > > > > > I>
> >> > > > > > > > > > can learn more?>
> >> > > > > > > > > > Two suggestions :>
> >> > > > > > > > > > - You can check if you can add this to the Hadoop
> >> > > configuration
> >> > > > > xml
> >> > > > > > > > > files>
> >> > > > > > > > > > and see if it gets picked up by Spark?>
> >> > > > > > > > > > - Alternatively, you can set the spark config
> mentioned
> >> > here>
> >> > > > > > > > > >
> http://hudi.apache.org/querying_data.html#spark-rt-view
> >> > > (works
> >> > > > > for
> >> > > > > > > ro
> >> > > > > > > > > view>
> >> > > > > > > > > > also), which should be doable I am assuming at this
> >> thrift
> >> > > > > server>
> >> > > > > > > > > >
> >> > > > > > > > > >
> >> > > > > > > > > > Thanks>
> >> > > > > > > > > > Vinoth>
> >> > > > > > > > > >
> >> > > > > > > > > >
> >> > > > > > > > > > On Wed, Apr 17, 2019 at 12:08 AM Jun Zhu
> >> > > > > <[email protected]
> >> > > > > > >
> >> > > > > > > > > wrote:>
> >> > > > > > > > > >
> >> > > > > > > > > > > Hi,>
> >> > > > > > > > > > > Link:
> >> > https://github.com/apache/incubator-hudi/issues/639>
> >> > > > > > > > > > > Sorry , failed open
> >> > > > > > > > > https://lists.apache.org/[email protected]>
> >> > > > > > > > > > > .>
> >> > > > > > > > > > > I have some follow up questions for issue 639:>
> >> > > > > > > > > > >>
> >> > > > > > > > > > > So, the sequence of events is . We write parquet
> files
> >> > and
> >> > > > then
> >> > > > > > > upon>
> >> > > > > > > > > > > > successful writing of all attempted parquet files,
> >> we
> >> > > > > actually
> >> > > > > > > make
> >> > > > > > > > > the>
> >> > > > > > > > > > > > commit as completed. (i.e not inflight anymore).
> So
> >> > this
> >> > > is
> >> > > > > > > normal.
> >> > > > > > > > > This>
> >> > > > > > > > > > > is>
> >> > > > > > > > > > > > done to prevent queries from reading partially
> >> written
> >> > > > > parquet
> >> > > > > > > > > files..>
> >> > > > > > > > > > > >>
> >> > > > > > > > > > >>
> >> > > > > > > > > > > Does that mean:>
> >> > > > > > > > > > > 1. Some file inflight may never reach commit?>
> >> > > > > > > > > > > 2. In occasion which inflight and parquet file
> >> generated
> >> > by
> >> > > > > > > inflight
> >> > > > > > > > > still>
> >> > > > > > > > > > > exists,  the global dedup will not dedup based on
> such
> >> > kind
> >> > > > > > file?>
> >> > > > > > > > > > > 3. In occasion which inflight and parquet file
> >> generated
> >> > by
> >> > > > > > > inflight
> >> > > > > > > > > still>
> >> > > > > > > > > > > exists,  the correct query result will be decided by
> >> read
> >> > > > > > config(I>
> >> > > > > > > > > > > mean mapreduce.input.pathFilter.class>
> >> > > > > > > > > > > in sparksql)>
> >> > > > > > > > > > > 4. Is there any way we can use>
> >> > > > > > > > > > >>
> >> > > > > > > > > > > >>
> >> > > > > > > > > > >
> >> > > > > > > > >
> >> > > > > > > > >
> >> > > > > > > >
> >> > > > > > >
> >> > > > > >
> >> > > > >
> >> > > >
> >> > >
> >> >
> >>
> spark.sparkContext.hadoopConfiguration.setClass("mapreduce.input.pathFilter.class",>
> >> > > > > > > > >
> >> > > > > > > > > > > >
> >> > classOf[com.uber.hoodie.hadoop.HoodieROTablePathFilter],>
> >> > > > > > > > > > > > classOf[org.apache.hadoop.fs.PathFilter]);>
> >> > > > > > > > > > >>
> >> > > > > > > > > > > in spark thrift server when start it?>
> >> > > > > > > > > > >>
> >> > > > > > > > > > > Best,>
> >> > > > > > > > > > > -->
> >> > > > > > > > > > > [image: vshapesaqua11553186012.gif] <
> >> https://vungle.com/
> >> > >
> >> > > > >  *Jun
> >> > > > > > > > Zhu*>
> >> > > > > > > > > > > Sr. Engineer I, Data>
> >> > > > > > > > > > > +86 18565739171>
> >> > > > > > > > > > >>
> >> > > > > > > > > > > [image: in1552694272.png] <
> >> > > > > > https://www.linkedin.com/company/vungle
> >> > > > > > > >>
> >> > > > > > > > > > > [image:>
> >> > > > > > > > > > > fb1552694203.png] <https://facebook.com/vungle>
> >> > > > [image:>
> >> > > > > > > > > > > tw1552694330.png] <https://twitter.com/vungle>
> >> > > [image:>
> >> > > > > > > > > > > ig1552694392.png] <https://www.instagram.com/vungle
> >>
> >> > > > > > > > > > > Units 3801, 3804, 38F, C Block, Beijing Yintai
> Center,
> >> > > > Beijing,
> >> > > > > > > > China>
> >> > > > > > > > > > >>
> >> > > > > > > > > >
> >> > > > > > > > >
> >> > > > > > > >
> >> > > > > > >
> >> > > > > > >
> >> > > > > > > --
> >> > > > > > > [image: vshapesaqua11553186012.gif] <https://vungle.com/>
> >> *Jun
> >> > > Zhu*
> >> > > > > > > Sr. Engineer I, Data
> >> > > > > > > +86 18565739171
> >> > > > > > >
> >> > > > > > > [image: in1552694272.png] <
> >> > https://www.linkedin.com/company/vungle
> >> > > >
> >> > > > > > > [image:
> >> > > > > > > fb1552694203.png] <https://facebook.com/vungle>
> [image:
> >> > > > > > > tw1552694330.png] <https://twitter.com/vungle>      [image:
> >> > > > > > > ig1552694392.png] <https://www.instagram.com/vungle>
> >> > > > > > > Units 3801, 3804, 38F, C Block, Beijing Yintai Center,
> >> Beijing,
> >> > > China
> >> > > > > > >
> >> > > > > >
> >> > > > >
> >> > > > >
> >> > > > > --
> >> > > > > [image: vshapesaqua11553186012.gif] <https://vungle.com/>  *Jun
> >> Zhu*
> >> > > > > Sr. Engineer I, Data
> >> > > > > +86 18565739171
> >> > > > >
> >> > > > > [image: in1552694272.png] <
> >> https://www.linkedin.com/company/vungle>
> >> > > > > [image:
> >> > > > > fb1552694203.png] <https://facebook.com/vungle>      [image:
> >> > > > > tw1552694330.png] <https://twitter.com/vungle>      [image:
> >> > > > > ig1552694392.png] <https://www.instagram.com/vungle>
> >> > > > > Units 3801, 3804, 38F, C Block, Beijing Yintai Center, Beijing,
> >> China
> >> > > > >
> >> > >
> >> >
> >> >
> >> > --
> >> > [image: vshapesaqua11553186012.gif] <https://vungle.com/>   *Jun Zhu*
> >> > Sr. Engineer I, Data
> >> > +86 18565739171
> >> >
> >> > [image: in1552694272.png] <https://www.linkedin.com/company/vungle>
> >> > [image:
> >> > fb1552694203.png] <https://facebook.com/vungle>      [image:
> >> > tw1552694330.png] <https://twitter.com/vungle>      [image:
> >> > ig1552694392.png] <https://www.instagram.com/vungle>
> >> > Units 3801, 3804, 38F, C Block, Beijing Yintai Center, Beijing, China
> >> >
> >>
> >
> >
> > --
> > [image: vshapesaqua11553186012.gif] <https://vungle.com/>   *Jun Zhu*
> > Sr. Engineer I, Data
> > +86 18565739171
> >
> > [image: in1552694272.png] <https://www.linkedin.com/company/vungle>
> [image:
> > fb1552694203.png] <https://facebook.com/vungle>      [image:
> > tw1552694330.png] <https://twitter.com/vungle>      [image:
> > ig1552694392.png] <https://www.instagram.com/vungle>
> > Units 3801, 3804, 38F, C Block, Beijing Yintai Center, Beijing, China
> >
> >
>


-- 
[image: vshapesaqua11553186012.gif] <https://vungle.com/>   *Jun Zhu*
Sr. Engineer I, Data
+86 18565739171

[image: in1552694272.png] <https://www.linkedin.com/company/vungle>    [image:
fb1552694203.png] <https://facebook.com/vungle>      [image:
tw1552694330.png] <https://twitter.com/vungle>      [image:
ig1552694392.png] <https://www.instagram.com/vungle>
Units 3801, 3804, 38F, C Block, Beijing Yintai Center, Beijing, China

Reply via email to