Modifying these parameters can only reduce the number of files, but it cannot avoid the current situation of a huge number of files. You may need to delete the dictionary and modify the parameters before rebuilding.
On Wed, Dec 20, 2023 at 11:16 AM MINGMING GE <7mmi...@gmail.com> wrote: > Need to increase the value of the following parameters prevents the > dictionary bucket from becoming larger > kylin.dictionary.globalV2-threshold-bucket-size=500000 > kylin.dictionary.globalV2-init-load-factor=0.5 > kylin.dictionary.globalV2-bucket-overhead-factor=1.5 > > It is also recommended to synchronize the code and use the global > dictionary V3 version. You will find that the performance will be greatly > improved. > > On Wed, Dec 20, 2023 at 10:47 AM Li, Can <c...@ebay.com.invalid> wrote: > >> 在添加count_distinct measure生成global dictionary >> 的时候,每个字典文件的大小是否固定,这一块能不能修改生成的文件大小,我看了生成的文件好像每个文件大小都在8M左右。我们现在有一个job >> 数据量比较大千亿级别的数据,这样在生成字典的时候写的文件数量非常的多导致一直报错出现Premature EOF >> >> >> >> 2023-12-18T20:05:43,304 INFO [logger-thread-0] scheduler.DAGScheduler : >> ResultStage 24 (foreachPartition at DFDictionaryBuilder.scala:94) failed in >> 36.866 s due to Job aborted due to stage failure: Task 1560 in stage 24.0 >> failed 4 times, most recent failure: Lost task 1560.3 in stage 24.0 (TID >> 1928) (hdc42-mcc10-01-0510-3303-067-tess0097.stratus.rno.ebay.com >> executor 25): java.io.IOException: Premature EOF from inputStream >> >> at org.apache.hadoop.io.IOUtils.readFully(IOUtils.java:204) >> >> at >> org.apache.spark.dict.NGlobalDictHDFSStore.getBucketDict(NGlobalDictHDFSStore.java:177) >> >> at >> org.apache.spark.dict.NGlobalDictHDFSStore.getBucketDict(NGlobalDictHDFSStore.java:162) >> >> at >> org.apache.spark.dict.NBucketDictionary.<init>(NBucketDictionary.java:50) >> >> at >> org.apache.spark.dict.NGlobalDictionaryV2.loadBucketDictionary(NGlobalDictionaryV2.java:78) >> >> at >> org.apache.kylin.engine.spark.builder.DFDictionaryBuilder.$anonfun$build$2(DFDictionaryBuilder.scala:98) >> >> at >> org.apache.kylin.engine.spark.builder.DFDictionaryBuilder.$anonfun$build$2$adapted(DFDictionaryBuilder.scala:94) >> >> at >> org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2(RDD.scala:1020) >> >> at >> org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2$adapted(RDD.scala:1020) >> >> at >> org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2257) >> >> at >> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) >> >> at org.apache.spark.scheduler.Task.run(Task.scala:131) >> >> at >> org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506) >> >> at >> org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1469) >> >> at >> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509) >> >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) >> >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) >> >> at java.lang.Thread.run(Thread.java:748) >> >> >> >> 从hdfs上看每个文件在8M左右 >> >> [image: 图片包含 淋浴, 绿色, 窗户, 大 描述已自动生成] >> >> >> >> 这个job数据量大概在2千亿行级别,同样的job千万级别的不会出现这个问题,但是数据量大的情况下一直出现这个Premature EOF错误,我在 >> google后给的一种解释如下: >> >> >> >> Premature EOF can occur due to multiple reasons, one of which is spawning >> of huge number of threads to write to disk on one reducer node using >> FileOutputCommitter. MultipleOutputs class allows you to write to files >> with custom names and to accomplish that, it spawns one thread per file and >> binds a port to it to write to the disk. Now this puts a limitation on the >> number of files that could be written to at one reducer node. I encountered >> this error when the number of files crossed 12000 roughly on one reducer >> node, as the threads got killed and the _temporary folder got deleted >> leading to plethora of these exception messages. My guess is - this is not >> a memory overshoot issue, nor it could be solved by allowing hadoop engine >> to spawn more threads. Reducing the number of files being written at one >> time at one node solved my problem - either by reducing the actual number >> of files being written, or by increasing reducer nodes. >> >