You can refer to the following articles --> https://cwiki.apache.org/confluence/display/KYLIN/Global+Dictionary+on+Spark
On Wed, Dec 20, 2023 at 1:51 PM Li, Can <c...@ebay.com.invalid> wrote: > Thanks. I have a question about that why does kylin5 uses the ‘PREV_’ and > ‘CURR_’ prefix to name global dictionary files. When does service write and > read from the ‘PREV_’ suffix files? > > 发件人: JunQing Cai <caicai2...@gmail.com> > 日期: 星期三, 2023年12月20日 11:28 > 收件人: dev@kylin.apache.org <dev@kylin.apache.org> > 主题: Re: Premature EOF Build global dictionary > External Email > > The configurations mentioned are all at the model-level. You can only > modify the configuration of a certain model and do not need to restart > kylin. > > On Wed, Dec 20, 2023 at 11:19 AM MINGMING GE <7mmi...@gmail.com> wrote: > > > Modifying these parameters can only reduce the number of files, but it > > cannot avoid the current situation of a huge number of files. You may > need > > to delete the dictionary and modify the parameters before rebuilding. > > > > On Wed, Dec 20, 2023 at 11:16 AM MINGMING GE <7mmi...@gmail.com> wrote: > > > > > Need to increase the value of the following parameters prevents the > > > dictionary bucket from becoming larger > > > kylin.dictionary.globalV2-threshold-bucket-size=500000 > > > kylin.dictionary.globalV2-init-load-factor=0.5 > > > kylin.dictionary.globalV2-bucket-overhead-factor=1.5 > > > > > > It is also recommended to synchronize the code and use the global > > > dictionary V3 version. You will find that the performance will be > greatly > > > improved. > > > > > > On Wed, Dec 20, 2023 at 10:47 AM Li, Can <c...@ebay.com.invalid> > wrote: > > > > > >> 在添加count_distinct measure生成global dictionary > > >> 的时候,每个字典文件的大小是否固定,这一块能不能修改生成的文件大小,我看了生成的文件好像每个文件大小都在8M左右。我们现在有一个job > > >> 数据量比较大千亿级别的数据,这样在生成字典的时候写的文件数量非常的多导致一直报错出现Premature EOF > > >> > > >> > > >> > > >> 2023-12-18T20:05:43,304 INFO [logger-thread-0] > scheduler.DAGScheduler : > > >> ResultStage 24 (foreachPartition at DFDictionaryBuilder.scala:94) > > failed in > > >> 36.866 s due to Job aborted due to stage failure: Task 1560 in stage > > 24.0 > > >> failed 4 times, most recent failure: Lost task 1560.3 in stage 24.0 > (TID > > >> 1928) (hdc42-mcc10-01-0510-3303-067-tess0097.stratus.rno.ebay.com > > >> executor 25): java.io.IOException: Premature EOF from inputStream > > >> > > >> at org.apache.hadoop.io.IOUtils.readFully(IOUtils.java:204) > > >> > > >> at > > >> > > > org.apache.spark.dict.NGlobalDictHDFSStore.getBucketDict(NGlobalDictHDFSStore.java:177) > > >> > > >> at > > >> > > > org.apache.spark.dict.NGlobalDictHDFSStore.getBucketDict(NGlobalDictHDFSStore.java:162) > > >> > > >> at > > >> > > org.apache.spark.dict.NBucketDictionary.<init>(NBucketDictionary.java:50) > > >> > > >> at > > >> > > > org.apache.spark.dict.NGlobalDictionaryV2.loadBucketDictionary(NGlobalDictionaryV2.java:78) > > >> > > >> at > > >> > > > org.apache.kylin.engine.spark.builder.DFDictionaryBuilder.$anonfun$build$2(DFDictionaryBuilder.scala:98) > > >> > > >> at > > >> > > > org.apache.kylin.engine.spark.builder.DFDictionaryBuilder.$anonfun$build$2$adapted(DFDictionaryBuilder.scala:94) > > >> > > >> at > > >> org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2(RDD.scala:1020) > > >> > > >> at > > >> > > > org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2$adapted(RDD.scala:1020) > > >> > > >> at > > >> > org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2257) > > >> > > >> at > > >> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) > > >> > > >> at org.apache.spark.scheduler.Task.run(Task.scala:131) > > >> > > >> at > > >> > > > org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506) > > >> > > >> at > > >> org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1469) > > >> > > >> at > > >> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509) > > >> > > >> at > > >> > > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > > >> > > >> at > > >> > > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > > >> > > >> at java.lang.Thread.run(Thread.java:748) > > >> > > >> > > >> > > >> 从hdfs上看每个文件在8M左右 > > >> > > >> [image: 图片包含 淋浴, 绿色, 窗户, 大 描述已自动生成] > > >> > > >> > > >> > > >> 这个job数据量大概在2千亿行级别,同样的job千万级别的不会出现这个问题,但是数据量大的情况下一直出现这个Premature > EOF错误,我在 > > >> google后给的一种解释如下: > > >> > > >> > > >> > > >> Premature EOF can occur due to multiple reasons, one of which is > > spawning > > >> of huge number of threads to write to disk on one reducer node using > > >> FileOutputCommitter. MultipleOutputs class allows you to write to > files > > >> with custom names and to accomplish that, it spawns one thread per > file > > and > > >> binds a port to it to write to the disk. Now this puts a limitation on > > the > > >> number of files that could be written to at one reducer node. I > > encountered > > >> this error when the number of files crossed 12000 roughly on one > reducer > > >> node, as the threads got killed and the _temporary folder got deleted > > >> leading to plethora of these exception messages. My guess is - this is > > not > > >> a memory overshoot issue, nor it could be solved by allowing hadoop > > engine > > >> to spawn more threads. Reducing the number of files being written at > one > > >> time at one node solved my problem - either by reducing the actual > > number > > >> of files being written, or by increasing reducer nodes. > > >> > > > > > >