orhankislal commented on a change in pull request #518:
URL: https://github.com/apache/madlib/pull/518#discussion_r494129949



##########
File path: src/ports/postgres/modules/deep_learning/madlib_keras_automl.py_in
##########
@@ -291,9 +338,100 @@ class KerasAutoML():
                (self.metrics_compute_frequency >= 1 and \
                 self.metrics_compute_frequency <= num_iterations)
 
+    def print_best_so_far(self):
+        """
+        Prints mst keys with best train/val losses at a given point.
+        """
+        best_so_far = '\n'
+        best_so_far += self.print_best_helper('training')
+        if self.validation_table:
+            best_so_far += self.print_best_helper('validation')
+        plpy.info(best_so_far)
+
+    def print_best_helper(self, keyword):
+        """
+        Helper function to Prints mst keys with best train/val losses at a 
given point.
+        :param keyword: column prefix ('training' or 'validation')
+        :return:
+        """
+        metrics_word, loss_word = keyword + '_metrics_final', keyword + 
'_loss_final'
+
+        res_str = 'Best {keyword} loss so far:\n'.format(keyword=keyword)
+        best_value = plpy.execute("SELECT {ModelSelectionSchema.MST_KEY}, 
{metrics_word}, " \
+                                  "{loss_word} FROM {self.model_info_table} 
ORDER BY " \
+                                  "{loss_word} LIMIT 1".format(self=self, 
ModelSelectionSchema=ModelSelectionSchema,
+                                                               
metrics_word=metrics_word, loss_word=loss_word))[0]
+        mst_key_value, metric_value, loss_value = 
best_value[ModelSelectionSchema.MST_KEY], \
+                                                  best_value[metrics_word], 
best_value[loss_word]
+        res_str += ModelSelectionSchema.MST_KEY + '=' + str(mst_key_value) + 
': metric=' + str(metric_value) + \
+                   ', loss=' + str(loss_value) + '\n'
+        return res_str
+
+    def get_current_timestamp(self):
+        """for start and end times for the chosen AutoML algorithm. Showcased 
in the output summary table"""
+        return datetime.fromtimestamp(time()).strftime('%Y-%m-%d %H:%M:%S')
+
+    def remove_temp_tables(self, model_training):
+        """
+        Remove all intermediate tables created for AutoML runs/updates.
+        :param model_training: Fit Multiple function call object.
+        """
+        drop_tables([model_training.original_model_output_table, 
model_training.model_info_table,
+                     model_training.model_summary_table, 
AutoMLSchema.TEMP_MST_TABLE,
+                     AutoMLSchema.TEMP_MST_SUMMARY_TABLE])
+
+# @MinWarning("warning")
+class AutoMLHyperband(KerasAutoML):
+    """
+    This class implements Hyperband, an infinite-arm bandit based algorithm 
that speeds up random search
+    through adaptive resource allocation, successive halving (SHA) and early 
stopping.
+
+    This class showcases and novel hyperband implementation by executing the 
hyperband rounds 'diagonally'

Review comment:
       I meant this: 
   `This class showcases and novel hyperband` -> `This class showcases a novel 
hyperband`

##########
File path: src/ports/postgres/modules/deep_learning/madlib_keras_automl.py_in
##########
@@ -500,63 +648,432 @@ class KerasAutoML():
                 "b (key integer, s_val integer, i_val integer) WHERE 
t.mst_key=b.key".format(self=self, l=l)
         plpy.execute(query)
 
-    def update_model_selection_table(self):
+# @MinWarning("warning")
+class AutoMLHyperopt(KerasAutoML):
+    """
+    This class implements Hyperopt, another automl method that explores 
awkward search spaces using
+    Random Search, Tree-structured Parzen Estimator (TPE), or Adaptive TPE.
+
+    This function executes hyperopt on top of our multiple model training 
infrastructure powered with
+    Model hOpper Parallelism (MOP), a hybrid of data and task parallelism.
+
+    This automl method inherits qualities from the automl class.
+    """
+    def __init__(self, schema_madlib, source_table, model_output_table, 
model_arch_table, model_selection_table,
+                 model_id_list, compile_params_grid, fit_params_grid, 
automl_method='hyperopt',
+                 automl_params='num_models=20, num_iters=5, algorithm=tpe', 
random_state=None, object_table=None,
+                 use_gpus=False, validation_table=None, 
metrics_compute_frequency=None,
+                 name=None, description=None, **kwargs):
+        KerasAutoML.__init__(self, schema_madlib, source_table, 
model_output_table, model_arch_table,
+                             model_selection_table, model_id_list, 
compile_params_grid, fit_params_grid,
+                             automl_method, automl_params, random_state, 
object_table, use_gpus,
+                             validation_table, metrics_compute_frequency, 
name, description, **kwargs)
+        self.compile_params_grid = self.compile_params_grid.replace('\n', 
'').replace(' ', '')
+        self.fit_params_grid = self.fit_params_grid.replace('\n', 
'').replace(' ', '')
+        try:
+            self.compile_params_grid = literal_eval(self.compile_params_grid)
+
+        except:
+            plpy.error("Invalid syntax in 'compile_params_dict'")
+        try:
+            self.fit_params_grid = literal_eval(self.fit_params_grid)
+        except:
+            plpy.error("Invalid syntax in 'fit_params_dict'")
+        self.validate_and_define_inputs()
+
+        self.num_workers = get_seg_number() * get_segments_per_host()
+
+        self.create_model_output_table()
+        self.create_model_output_info_table()
+        self.find_hyperopt_config()
+
+    def validate_and_define_inputs(self):
+        automl_params_dict = extract_keyvalue_params(self.automl_params,
+                                                     
default_values={'num_models': 20,
+                                                                     
'num_iters': 5,
+                                                                     
'algorithm': 'tpe'},
+                                                     lower_case_names=True)
+        # casting relevant values to int
+        for i in automl_params_dict:
+            try:
+                automl_params_dict[i] = int(automl_params_dict[i])
+            except ValueError:
+                pass
+        _assert(len(automl_params_dict) >= 1 and len(automl_params_dict) <= 3,
+                "DL: Only num_models, num_iters, and algorithm may be 
specified")
+        for i in automl_params_dict:
+            if i == AutoMLSchema.NUM_MODELS:
+                self.num_models = automl_params_dict[AutoMLSchema.NUM_MODELS]
+            elif i == AutoMLSchema.NUM_ITERS:
+                self.num_iters = automl_params_dict[AutoMLSchema.NUM_ITERS]
+            elif i == AutoMLSchema.ALGORITHM:
+                if automl_params_dict[AutoMLSchema.ALGORITHM].lower() == 
'rand':
+                    self.algorithm = rand
+                elif automl_params_dict[AutoMLSchema.ALGORITHM].lower() == 
'tpe':
+                    self.algorithm = tpe
+                # elif automl_params_dict[AutoMLSchema.ALGORITHM].lower() == 
'atpe':
+                #     self.algorithm = atpe
+                # uncomment the above lines after atpe works
+                else:
+                    plpy.error("DL: algorithm in 'automl_params' must be 
'rand', 'tpe'") # , or 'atpe'
+            else:
+                plpy.error("DL: {0} is an invalid automl param".format(i))
+        _assert(self.num_models > 0 and self.num_iters > 0, "DL: num_models 
and num_iters in 'automl_params' "
+                                                            "must be positive")
+        _assert(self._is_valid_metrics_compute_frequency(self.num_iters), "DL: 
'metrics_compute_frequency' "
+                                                                          "out 
of iteration range")
+
+    def find_hyperopt_config(self):
         """
-        Drops and re-create the mst table to only include the best performing 
model configuration.
+        Executes hyperopt on top of MOP.
         """
-        drop_tables([self.model_selection_table])
 
-        # only retaining best performing config
-        plpy.execute("CREATE TABLE {self.model_selection_table} AS SELECT 
mst_key, model_id, compile_params, " \
-                     "fit_params FROM {self.model_info_table} " \
-                     "ORDER BY {AutoMLSchema.LOSS_METRIC} LIMIT 
1".format(self=self, AutoMLSchema=AutoMLSchema))
+        make_mst_summary = True
+        trials = Trials()
+        domain = Domain(None, self.get_search_space())
+        rand_state = np.random.RandomState(self.random_state)
+        configs_lst = self.get_configs_list()
 
-    def generate_model_output_summary_table(self, model_training):
+        self.start_training_time = self.get_current_timestamp()
+        for low, high in configs_lst:
+            i, n = low, high - low + 1
+
+            # Using HyperOpt TPE/ATPE to generate parameters
+            hyperopt_params = []
+            sampled_params = []
+            for j in range(i, i + n):
+                new_param = self.algorithm.suggest([j], domain, trials, 
rand_state.randint(0, 2 ** 31 - 1))
+                new_param[0]['status'] = STATUS_RUNNING
+
+                trials.insert_trial_docs(new_param)
+                trials.refresh()
+                hyperopt_params.append(new_param[0])
+                sampled_params.append(new_param[0]['misc']['vals'])
+
+            model_id_list, compile_params, fit_params = 
self.extract_param_vals(sampled_params)
+            msts_list = self.generate_msts(model_id_list, compile_params, 
fit_params)
+            try:
+                self.remove_temp_tables(model_training)
+            except:
+                pass
+            self.populate_temp_mst_table(i, msts_list)
+
+            plpy.info("***Evaluating {n} newly suggested model 
configurations***".format(n=n))
+            model_training = FitMultipleModel(self.schema_madlib, 
self.source_table, AutoMLSchema.TEMP_OUTPUT_TABLE,
+                             AutoMLSchema.TEMP_MST_TABLE, self.num_iters, 
self.use_gpus, self.validation_table,
+                             self.metrics_compute_frequency, False, self.name, 
self.description)
+            if make_mst_summary:
+                
self.generate_mst_summary_table(self.model_selection_summary_table)
+                make_mst_summary = False
+
+            # HyperOpt TPE update
+            for k, hyperopt_param in enumerate(hyperopt_params, i):
+                loss_val = plpy.execute("SELECT {AutoMLSchema.LOSS_METRIC} 
FROM {model_training.model_info_table} " \
+                             "WHERE 
{ModelSelectionSchema.MST_KEY}={k}".format(AutoMLSchema=AutoMLSchema,
+                                                                               
ModelSelectionSchema=ModelSelectionSchema,
+                                                                               
**locals()))[0][AutoMLSchema.LOSS_METRIC]
+
+                hyperopt_param['status'] = STATUS_OK

Review comment:
       OK we should leave a short comment to make sure it doesn't get 
refactored out in the future




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to