[ 
https://issues.apache.org/jira/browse/MAHOUT-817?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13158176#comment-13158176
 ] 

Dmitriy Lyubimov commented on MAHOUT-817:
-----------------------------------------

OK so that's what I called brute force approach. Assuming we somehow know the 
median, just adjust the input as we go. For column wise median we will know the 
median right away. For row wise median, which I think the majority of use cases 
would want to do, we will have to precompute it with one more pass. Good thing 
about it is that at least it wiukd have a very little shuffle and sort 
pressure, so it would practically run almost as fast as a map only job.

I think this is a very easy change.
                
> Add PCA options to SSVD code
> ----------------------------
>
>                 Key: MAHOUT-817
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-817
>             Project: Mahout
>          Issue Type: New Feature
>    Affects Versions: 0.6
>            Reporter: Dmitriy Lyubimov
>            Assignee: Dmitriy Lyubimov
>             Fix For: Backlog
>
>
> It seems that a simple solution should exist to integrate PCA mean 
> subtraction into SSVD algorithm without making it a pre-requisite step and 
> also avoiding densifying the big input. 
> Several approaches were suggested:
> 1) subtract mean off B
> 2) propagate mean vector deeper into algorithm algebraically where the data 
> is already collapsed to smaller matrices
> 3) --?
> It needs some math done first . I'll take a stab at 1 and 2 but thoughts and 
> math are welcome.

--
This message is automatically generated by JIRA.
If you think it was sent incorrectly, please contact your JIRA administrators: 
https://issues.apache.org/jira/secure/ContactAdministrators!default.jspa
For more information on JIRA, see: http://www.atlassian.com/software/jira

        

Reply via email to