Hi Deb, Are you using the master branch or a particular commit? Do you have negative or out-of-integer-range user or product ids? There is an issue with ALS' partitioning (https://spark-project.atlassian.net/browse/SPARK-1281), but I'm not sure whether that is the reason. Could you try to see whether you can reproduce the error on a public data set, e.g., movielens? Thanks!
Best, Xiangrui On Sat, Apr 5, 2014 at 10:53 PM, Debasish Das <debasish.da...@gmail.com> wrote: > Hi, > > I deployed apache/spark master today and recently there were many ALS > related checkins and enhancements.. > > I am running ALS with explicit feedback and I remember most enhancements > were related to implicit feedback... > > With 25 factors my runs were successful but with 50 factors I am getting > array index out of bound... > > Note that I was hitting gc errors before with an older version of spark but > it seems like the sparse matrix partitioning scheme has changed now...data > caching looks much balanced now...earlier one node was becoming > bottleneck...Although I ran with 64g memory per node... > > There are around 3M products, 25M users... > > Anyone noticed this bug or something similar ? > > 14/04/05 23:03:15 WARN TaskSetManager: Loss was due to > java.lang.ArrayIndexOutOfBoundsException > java.lang.ArrayIndexOutOfBoundsException: 81029 > at > org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateBlock$1$$anonfun$apply$mcVI$sp$1.apply$mcVI$sp(ALS.scala:450) > at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141) > at > org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateBlock$1.apply$mcVI$sp(ALS.scala:446) > at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141) > at org.apache.spark.mllib.recommendation.ALS.org > $apache$spark$mllib$recommendation$ALS$$updateBlock(ALS.scala:445) > at > org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateFeatures$2.apply(ALS.scala:416) > at > org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateFeatures$2.apply(ALS.scala:415) > at > org.apache.spark.rdd.MappedValuesRDD$$anonfun$compute$1.apply(MappedValuesRDD.scala:31) > at > org.apache.spark.rdd.MappedValuesRDD$$anonfun$compute$1.apply(MappedValuesRDD.scala:31) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at > org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:149) > at > org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:147) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:147) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:220) > at > org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:220) > at > org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:220) > at org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:220) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102) > at org.apache.spark.scheduler.Task.run(Task.scala:52) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:211) > at > org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:43) > at > org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:42) > at java.security.AccessController.doPrivileged(Native Method) > at javax.security.auth.Subject.doAs(Subject.java:396) > at > org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408) > at > org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:42) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176) > at > java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) > at java.lang.Thread.run(Thread.java:662) > > Thanks. > Deb