Hi Deb,

This thread is for the out-of-bound error you described. I don't think
the number of iterations has any effect here. My questions were:

1) Are you using the master branch or a particular commit?

2) Do you have negative or out-of-integer-range user or product ids?
Try to print out the max/min value of user/product ids.

Best,
Xiangrui

On Sun, Apr 6, 2014 at 11:01 PM, Debasish Das <debasish.da...@gmail.com> wrote:
> Hi Xiangrui,
>
> With 4 ALS iterations it runs fine...If I run 10 I am failing...I believe I
> have to cut the lineage chain and call checkpoint....Trying to follow the
> other email chain on checkpointing...
>
> Thanks.
> Deb
>
>
> On Sun, Apr 6, 2014 at 9:08 PM, Xiangrui Meng <men...@gmail.com> wrote:
>
>> Hi Deb,
>>
>> Are you using the master branch or a particular commit? Do you have
>> negative or out-of-integer-range user or product ids? There is an
>> issue with ALS' partitioning
>> (https://spark-project.atlassian.net/browse/SPARK-1281), but I'm not
>> sure whether that is the reason. Could you try to see whether you can
>> reproduce the error on a public data set, e.g., movielens? Thanks!
>>
>> Best,
>> Xiangrui
>>
>> On Sat, Apr 5, 2014 at 10:53 PM, Debasish Das <debasish.da...@gmail.com>
>> wrote:
>> > Hi,
>> >
>> > I deployed apache/spark master today and recently there were many ALS
>> > related checkins and enhancements..
>> >
>> > I am running ALS with explicit feedback and I remember most enhancements
>> > were related to implicit feedback...
>> >
>> > With 25 factors my runs were successful but with 50 factors I am getting
>> > array index out of bound...
>> >
>> > Note that I was hitting gc errors before with an older version of spark
>> but
>> > it seems like the sparse matrix partitioning scheme has changed
>> now...data
>> > caching looks much balanced now...earlier one node was becoming
>> > bottleneck...Although I ran with 64g memory per node...
>> >
>> > There are around 3M products, 25M users...
>> >
>> > Anyone noticed this bug or something similar ?
>> >
>> > 14/04/05 23:03:15 WARN TaskSetManager: Loss was due to
>> > java.lang.ArrayIndexOutOfBoundsException
>> > java.lang.ArrayIndexOutOfBoundsException: 81029
>> >     at
>> >
>> org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateBlock$1$$anonfun$apply$mcVI$sp$1.apply$mcVI$sp(ALS.scala:450)
>> >     at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141)
>> >     at
>> >
>> org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateBlock$1.apply$mcVI$sp(ALS.scala:446)
>> >     at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141)
>> >     at org.apache.spark.mllib.recommendation.ALS.org
>> > $apache$spark$mllib$recommendation$ALS$$updateBlock(ALS.scala:445)
>> >     at
>> >
>> org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateFeatures$2.apply(ALS.scala:416)
>> >     at
>> >
>> org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateFeatures$2.apply(ALS.scala:415)
>> >     at
>> >
>> org.apache.spark.rdd.MappedValuesRDD$$anonfun$compute$1.apply(MappedValuesRDD.scala:31)
>> >     at
>> >
>> org.apache.spark.rdd.MappedValuesRDD$$anonfun$compute$1.apply(MappedValuesRDD.scala:31)
>> >     at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>> >     at
>> >
>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:149)
>> >     at
>> >
>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:147)
>> >     at
>> >
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>> >     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>> >     at org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:147)
>> >     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229)
>> >     at org.apache.spark.rdd.RDD.iterator(RDD.scala:220)
>> >     at
>> > org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31)
>> >     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229)
>> >     at org.apache.spark.rdd.RDD.iterator(RDD.scala:220)
>> >     at
>> >
>> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31)
>> >     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229)
>> >     at org.apache.spark.rdd.RDD.iterator(RDD.scala:220)
>> >     at org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33)
>> >     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:229)
>> >     at org.apache.spark.rdd.RDD.iterator(RDD.scala:220)
>> >     at
>> >
>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161)
>> >     at
>> >
>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)
>> >     at org.apache.spark.scheduler.Task.run(Task.scala:52)
>> >     at
>> >
>> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:211)
>> >     at
>> >
>> org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:43)
>> >     at
>> >
>> org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:42)
>> >     at java.security.AccessController.doPrivileged(Native Method)
>> >     at javax.security.auth.Subject.doAs(Subject.java:396)
>> >     at
>> >
>> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408)
>> >     at
>> >
>> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:42)
>> >     at
>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176)
>> >     at
>> >
>> java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
>> >     at
>> >
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
>> >     at java.lang.Thread.run(Thread.java:662)
>> >
>> > Thanks.
>> > Deb
>>

Reply via email to