Will do. Thanks! 2016-05-19 13:26 GMT-07:00 Reynold Xin <r...@databricks.com>:
> Xiao thanks for posting. Please file a bug in JIRA. Again as I said in the > email this is not meant to be a functional release and will contain bugs. > > On Thu, May 19, 2016 at 1:20 PM, Xiao Li <gatorsm...@gmail.com> wrote: > >> -1 >> >> Unable to use Hive meta-store in pyspark shell. Tried both HiveContext >> and SparkSession. Both failed. It always uses in-memory catalog. Anybody >> else hit the same issue? >> >> >> Method 1: SparkSession >> >> >>> from pyspark.sql import SparkSession >> >> >>> spark = SparkSession.builder.enableHiveSupport().getOrCreate() >> >> >>> >> >> >>> spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") >> >> DataFrame[] >> >> >>> spark.sql("LOAD DATA LOCAL INPATH >> 'examples/src/main/resources/kv1.txt' INTO TABLE src") >> >> Traceback (most recent call last): >> >> File "<stdin>", line 1, in <module> >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/session.py", >> line 494, in sql >> >> return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py", >> line 933, in __call__ >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/utils.py", >> line 57, in deco >> >> return f(*a, **kw) >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/protocol.py", >> line 312, in get_return_value >> >> py4j.protocol.Py4JJavaError: An error occurred while calling o21.sql. >> >> : java.lang.UnsupportedOperationException: loadTable is not implemented >> >> at >> org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.loadTable(InMemoryCatalog.scala:297) >> >> at >> org.apache.spark.sql.catalyst.catalog.SessionCatalog.loadTable(SessionCatalog.scala:280) >> >> at org.apache.spark.sql.execution.command.LoadData.run(tables.scala:263) >> >> at >> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:57) >> >> at >> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:55) >> >> at >> org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:69) >> >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >> >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >> >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136) >> >> at >> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) >> >> at >> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133) >> >> at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114) >> >> at >> org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:85) >> >> at >> org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:85) >> >> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:187) >> >> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:168) >> >> at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) >> >> at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:541) >> >> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >> >> at >> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) >> >> at >> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >> >> at java.lang.reflect.Method.invoke(Method.java:606) >> >> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) >> >> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) >> >> at py4j.Gateway.invoke(Gateway.java:280) >> >> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128) >> >> at py4j.commands.CallCommand.execute(CallCommand.java:79) >> >> at py4j.GatewayConnection.run(GatewayConnection.java:211) >> >> at java.lang.Thread.run(Thread.java:745) >> >> >> Method 2: Using HiveContext: >> >> >>> from pyspark.sql import HiveContext >> >> >>> sqlContext = HiveContext(sc) >> >> >>> sqlContext.sql("CREATE TABLE IF NOT EXISTS src (key INT, value >> STRING)") >> >> DataFrame[] >> >> >>> sqlContext.sql("LOAD DATA LOCAL INPATH >> 'examples/src/main/resources/kv1.txt' INTO TABLE src") >> >> Traceback (most recent call last): >> >> File "<stdin>", line 1, in <module> >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/context.py", >> line 346, in sql >> >> return self.sparkSession.sql(sqlQuery) >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/session.py", >> line 494, in sql >> >> return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py", >> line 933, in __call__ >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/utils.py", >> line 57, in deco >> >> return f(*a, **kw) >> >> File >> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/protocol.py", >> line 312, in get_return_value >> >> py4j.protocol.Py4JJavaError: An error occurred while calling o21.sql. >> >> : java.lang.UnsupportedOperationException: loadTable is not implemented >> >> at >> org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.loadTable(InMemoryCatalog.scala:297) >> >> at >> org.apache.spark.sql.catalyst.catalog.SessionCatalog.loadTable(SessionCatalog.scala:280) >> >> at org.apache.spark.sql.execution.command.LoadData.run(tables.scala:263) >> >> at >> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:57) >> >> at >> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:55) >> >> at >> org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:69) >> >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >> >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >> >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136) >> >> at >> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) >> >> at >> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133) >> >> at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114) >> >> at >> org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:85) >> >> at >> org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:85) >> >> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:187) >> >> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:168) >> >> at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) >> >> at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:541) >> >> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >> >> at >> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) >> >> at >> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >> >> at java.lang.reflect.Method.invoke(Method.java:606) >> >> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) >> >> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) >> >> at py4j.Gateway.invoke(Gateway.java:280) >> >> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128) >> >> at py4j.commands.CallCommand.execute(CallCommand.java:79) >> >> at py4j.GatewayConnection.run(GatewayConnection.java:211) >> >> at java.lang.Thread.run(Thread.java:745) >> >> 2016-05-19 12:49 GMT-07:00 Herman van Hövell tot Westerflier < >> hvanhov...@questtec.nl>: >> >>> +1 >>> >>> >>> 2016-05-19 18:20 GMT+02:00 Xiangrui Meng <m...@databricks.com>: >>> >>>> +1 >>>> >>>> On Thu, May 19, 2016 at 9:18 AM Joseph Bradley <jos...@databricks.com> >>>> wrote: >>>> >>>>> +1 >>>>> >>>>> On Wed, May 18, 2016 at 10:49 AM, Reynold Xin <r...@databricks.com> >>>>> wrote: >>>>> >>>>>> Hi Ovidiu-Cristian , >>>>>> >>>>>> The best source of truth is change the filter with target version to >>>>>> 2.1.0. Not a lot of tickets have been targeted yet, but I'd imagine as we >>>>>> get closer to 2.0 release, more will be retargeted at 2.1.0. >>>>>> >>>>>> >>>>>> >>>>>> On Wed, May 18, 2016 at 10:43 AM, Ovidiu-Cristian MARCU < >>>>>> ovidiu-cristian.ma...@inria.fr> wrote: >>>>>> >>>>>>> Yes, I can filter.. >>>>>>> Did that and for example: >>>>>>> >>>>>>> https://issues.apache.org/jira/browse/SPARK-15370?jql=project%20%3D%20SPARK%20AND%20resolution%20%3D%20Unresolved%20AND%20affectedVersion%20%3D%202.0.0 >>>>>>> <https://issues.apache.org/jira/browse/SPARK-15370?jql=project%20=%20SPARK%20AND%20resolution%20=%20Unresolved%20AND%20affectedVersion%20=%202.0.0> >>>>>>> >>>>>>> To rephrase: for 2.0 do you have specific issues that are not a >>>>>>> priority and will released maybe with 2.1 for example? >>>>>>> >>>>>>> Keep up the good work! >>>>>>> >>>>>>> On 18 May 2016, at 18:19, Reynold Xin <r...@databricks.com> wrote: >>>>>>> >>>>>>> You can find that by changing the filter to target version = 2.0.0. >>>>>>> Cheers. >>>>>>> >>>>>>> On Wed, May 18, 2016 at 9:00 AM, Ovidiu-Cristian MARCU < >>>>>>> ovidiu-cristian.ma...@inria.fr> wrote: >>>>>>> >>>>>>>> +1 Great, I see the list of resolved issues, do you have a list of >>>>>>>> known issue you plan to stay with this release? >>>>>>>> >>>>>>>> with >>>>>>>> build/mvn -Pyarn -Phadoop-2.6 -Dhadoop.version=2.7.1 -Phive >>>>>>>> -Phive-thriftserver -DskipTests clean package >>>>>>>> >>>>>>>> mvn -version >>>>>>>> Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; >>>>>>>> 2015-11-10T17:41:47+01:00) >>>>>>>> Maven home: /Users/omarcu/tools/apache-maven-3.3.9 >>>>>>>> Java version: 1.7.0_80, vendor: Oracle Corporation >>>>>>>> Java home: >>>>>>>> /Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home/jre >>>>>>>> Default locale: en_US, platform encoding: UTF-8 >>>>>>>> OS name: "mac os x", version: "10.11.5", arch: "x86_64", family: >>>>>>>> “mac" >>>>>>>> >>>>>>>> [INFO] Reactor Summary: >>>>>>>> [INFO] >>>>>>>> [INFO] Spark Project Parent POM ........................... SUCCESS >>>>>>>> [ 2.635 s] >>>>>>>> [INFO] Spark Project Tags ................................. SUCCESS >>>>>>>> [ 1.896 s] >>>>>>>> [INFO] Spark Project Sketch ............................... SUCCESS >>>>>>>> [ 2.560 s] >>>>>>>> [INFO] Spark Project Networking ........................... SUCCESS >>>>>>>> [ 6.533 s] >>>>>>>> [INFO] Spark Project Shuffle Streaming Service ............ SUCCESS >>>>>>>> [ 4.176 s] >>>>>>>> [INFO] Spark Project Unsafe ............................... SUCCESS >>>>>>>> [ 4.809 s] >>>>>>>> [INFO] Spark Project Launcher ............................. SUCCESS >>>>>>>> [ 6.242 s] >>>>>>>> [INFO] Spark Project Core ................................. SUCCESS >>>>>>>> [01:20 min] >>>>>>>> [INFO] Spark Project GraphX ............................... SUCCESS >>>>>>>> [ 9.148 s] >>>>>>>> [INFO] Spark Project Streaming ............................ SUCCESS >>>>>>>> [ 22.760 s] >>>>>>>> [INFO] Spark Project Catalyst ............................. SUCCESS >>>>>>>> [ 50.783 s] >>>>>>>> [INFO] Spark Project SQL .................................. SUCCESS >>>>>>>> [01:05 min] >>>>>>>> [INFO] Spark Project ML Local Library ..................... SUCCESS >>>>>>>> [ 4.281 s] >>>>>>>> [INFO] Spark Project ML Library ........................... SUCCESS >>>>>>>> [ 54.537 s] >>>>>>>> [INFO] Spark Project Tools ................................ SUCCESS >>>>>>>> [ 0.747 s] >>>>>>>> [INFO] Spark Project Hive ................................. SUCCESS >>>>>>>> [ 33.032 s] >>>>>>>> [INFO] Spark Project HiveContext Compatibility ............ SUCCESS >>>>>>>> [ 3.198 s] >>>>>>>> [INFO] Spark Project REPL ................................. SUCCESS >>>>>>>> [ 3.573 s] >>>>>>>> [INFO] Spark Project YARN Shuffle Service ................. SUCCESS >>>>>>>> [ 4.617 s] >>>>>>>> [INFO] Spark Project YARN ................................. SUCCESS >>>>>>>> [ 7.321 s] >>>>>>>> [INFO] Spark Project Hive Thrift Server ................... SUCCESS >>>>>>>> [ 16.496 s] >>>>>>>> [INFO] Spark Project Assembly ............................. SUCCESS >>>>>>>> [ 2.300 s] >>>>>>>> [INFO] Spark Project External Flume Sink .................. SUCCESS >>>>>>>> [ 4.219 s] >>>>>>>> [INFO] Spark Project External Flume ....................... SUCCESS >>>>>>>> [ 6.987 s] >>>>>>>> [INFO] Spark Project External Flume Assembly .............. SUCCESS >>>>>>>> [ 1.465 s] >>>>>>>> [INFO] Spark Integration for Kafka 0.8 .................... SUCCESS >>>>>>>> [ 6.891 s] >>>>>>>> [INFO] Spark Project Examples ............................. SUCCESS >>>>>>>> [ 13.465 s] >>>>>>>> [INFO] Spark Project External Kafka Assembly .............. SUCCESS >>>>>>>> [ 2.815 s] >>>>>>>> [INFO] >>>>>>>> ------------------------------------------------------------------------ >>>>>>>> [INFO] BUILD SUCCESS >>>>>>>> [INFO] >>>>>>>> ------------------------------------------------------------------------ >>>>>>>> [INFO] Total time: 07:04 min >>>>>>>> [INFO] Finished at: 2016-05-18T17:55:33+02:00 >>>>>>>> [INFO] Final Memory: 90M/824M >>>>>>>> [INFO] >>>>>>>> ------------------------------------------------------------------------ >>>>>>>> >>>>>>>> On 18 May 2016, at 16:28, Sean Owen <so...@cloudera.com> wrote: >>>>>>>> >>>>>>>> I think it's a good idea. Although releases have been preceded >>>>>>>> before >>>>>>>> by release candidates for developers, it would be good to get a >>>>>>>> formal >>>>>>>> preview/beta release ratified for public consumption ahead of a new >>>>>>>> major release. Better to have a little more testing in the wild to >>>>>>>> identify problems before 2.0.0 is finalized. >>>>>>>> >>>>>>>> +1 to the release. License, sigs, etc check out. On Ubuntu 16 + Java >>>>>>>> 8, compilation and tests succeed for "-Pyarn -Phive >>>>>>>> -Phive-thriftserver -Phadoop-2.6". >>>>>>>> >>>>>>>> On Wed, May 18, 2016 at 6:40 AM, Reynold Xin <r...@apache.org> >>>>>>>> wrote: >>>>>>>> >>>>>>>> Hi, >>>>>>>> >>>>>>>> In the past the Apache Spark community have created preview >>>>>>>> packages (not >>>>>>>> official releases) and used those as opportunities to ask community >>>>>>>> members >>>>>>>> to test the upcoming versions of Apache Spark. Several people in >>>>>>>> the Apache >>>>>>>> community have suggested we conduct votes for these preview >>>>>>>> packages and >>>>>>>> turn them into formal releases by the Apache foundation's standard. >>>>>>>> Preview >>>>>>>> releases are not meant to be functional, i.e. they can and highly >>>>>>>> likely >>>>>>>> will contain critical bugs or documentation errors, but we will be >>>>>>>> able to >>>>>>>> post them to the project's website to get wider feedback. They >>>>>>>> should >>>>>>>> satisfy the legal requirements of Apache's release policy >>>>>>>> (http://www.apache.org/dev/release.html) such as having proper >>>>>>>> licenses. >>>>>>>> >>>>>>>> >>>>>>>> Please vote on releasing the following candidate as Apache Spark >>>>>>>> version >>>>>>>> 2.0.0-preview. The vote is open until Friday, May 20, 2015 at 11:00 >>>>>>>> PM PDT >>>>>>>> and passes if a majority of at least 3 +1 PMC votes are cast. >>>>>>>> >>>>>>>> [ ] +1 Release this package as Apache Spark 2.0.0-preview >>>>>>>> [ ] -1 Do not release this package because ... >>>>>>>> >>>>>>>> To learn more about Apache Spark, please see >>>>>>>> http://spark.apache.org/ >>>>>>>> >>>>>>>> The tag to be voted on is 2.0.0-preview >>>>>>>> (8f5a04b6299e3a47aca13cbb40e72344c0114860) >>>>>>>> >>>>>>>> The release files, including signatures, digests, etc. can be found >>>>>>>> at: >>>>>>>> >>>>>>>> http://home.apache.org/~pwendell/spark-releases/spark-2.0.0-preview-bin/ >>>>>>>> >>>>>>>> Release artifacts are signed with the following key: >>>>>>>> https://people.apache.org/keys/committer/pwendell.asc >>>>>>>> >>>>>>>> The documentation corresponding to this release can be found at: >>>>>>>> >>>>>>>> http://home.apache.org/~pwendell/spark-releases/spark-2.0.0-preview-docs/ >>>>>>>> >>>>>>>> The list of resolved issues are: >>>>>>>> >>>>>>>> https://issues.apache.org/jira/browse/SPARK-15351?jql=project%20%3D%20SPARK%20AND%20fixVersion%20%3D%202.0.0 >>>>>>>> >>>>>>>> >>>>>>>> If you are a Spark user, you can help us test this release by >>>>>>>> taking an >>>>>>>> existing Apache Spark workload and running on this candidate, then >>>>>>>> reporting >>>>>>>> any regressions. >>>>>>>> >>>>>>>> >>>>>>>> >>>>>>>> --------------------------------------------------------------------- >>>>>>>> To unsubscribe, e-mail: dev-unsubscr...@spark.apache.org >>>>>>>> For additional commands, e-mail: dev-h...@spark.apache.org >>>>>>>> >>>>>>>> >>>>>>>> >>>>>>> >>>>>>> >>>>>> >>> >> >