Changed my vote to +1. Thanks! 2016-05-19 13:28 GMT-07:00 Xiao Li <gatorsm...@gmail.com>:
> Will do. Thanks! > > 2016-05-19 13:26 GMT-07:00 Reynold Xin <r...@databricks.com>: > >> Xiao thanks for posting. Please file a bug in JIRA. Again as I said in >> the email this is not meant to be a functional release and will contain >> bugs. >> >> On Thu, May 19, 2016 at 1:20 PM, Xiao Li <gatorsm...@gmail.com> wrote: >> >>> -1 >>> >>> Unable to use Hive meta-store in pyspark shell. Tried both HiveContext >>> and SparkSession. Both failed. It always uses in-memory catalog. Anybody >>> else hit the same issue? >>> >>> >>> Method 1: SparkSession >>> >>> >>> from pyspark.sql import SparkSession >>> >>> >>> spark = SparkSession.builder.enableHiveSupport().getOrCreate() >>> >>> >>> >>> >>> >>> spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") >>> >>> DataFrame[] >>> >>> >>> spark.sql("LOAD DATA LOCAL INPATH >>> 'examples/src/main/resources/kv1.txt' INTO TABLE src") >>> >>> Traceback (most recent call last): >>> >>> File "<stdin>", line 1, in <module> >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/session.py", >>> line 494, in sql >>> >>> return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py", >>> line 933, in __call__ >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/utils.py", >>> line 57, in deco >>> >>> return f(*a, **kw) >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/protocol.py", >>> line 312, in get_return_value >>> >>> py4j.protocol.Py4JJavaError: An error occurred while calling o21.sql. >>> >>> : java.lang.UnsupportedOperationException: loadTable is not implemented >>> >>> at >>> org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.loadTable(InMemoryCatalog.scala:297) >>> >>> at >>> org.apache.spark.sql.catalyst.catalog.SessionCatalog.loadTable(SessionCatalog.scala:280) >>> >>> at org.apache.spark.sql.execution.command.LoadData.run(tables.scala:263) >>> >>> at >>> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:57) >>> >>> at >>> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:55) >>> >>> at >>> org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:69) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136) >>> >>> at >>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133) >>> >>> at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114) >>> >>> at >>> org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:85) >>> >>> at >>> org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:85) >>> >>> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:187) >>> >>> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:168) >>> >>> at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) >>> >>> at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:541) >>> >>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>> >>> at >>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) >>> >>> at >>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>> >>> at java.lang.reflect.Method.invoke(Method.java:606) >>> >>> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) >>> >>> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) >>> >>> at py4j.Gateway.invoke(Gateway.java:280) >>> >>> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128) >>> >>> at py4j.commands.CallCommand.execute(CallCommand.java:79) >>> >>> at py4j.GatewayConnection.run(GatewayConnection.java:211) >>> >>> at java.lang.Thread.run(Thread.java:745) >>> >>> >>> Method 2: Using HiveContext: >>> >>> >>> from pyspark.sql import HiveContext >>> >>> >>> sqlContext = HiveContext(sc) >>> >>> >>> sqlContext.sql("CREATE TABLE IF NOT EXISTS src (key INT, value >>> STRING)") >>> >>> DataFrame[] >>> >>> >>> sqlContext.sql("LOAD DATA LOCAL INPATH >>> 'examples/src/main/resources/kv1.txt' INTO TABLE src") >>> >>> Traceback (most recent call last): >>> >>> File "<stdin>", line 1, in <module> >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/context.py", >>> line 346, in sql >>> >>> return self.sparkSession.sql(sqlQuery) >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/session.py", >>> line 494, in sql >>> >>> return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py", >>> line 933, in __call__ >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/pyspark/sql/utils.py", >>> line 57, in deco >>> >>> return f(*a, **kw) >>> >>> File >>> "/Users/xiaoli/IdeaProjects/sparkDelivery/python/lib/py4j-0.10.1-src.zip/py4j/protocol.py", >>> line 312, in get_return_value >>> >>> py4j.protocol.Py4JJavaError: An error occurred while calling o21.sql. >>> >>> : java.lang.UnsupportedOperationException: loadTable is not implemented >>> >>> at >>> org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.loadTable(InMemoryCatalog.scala:297) >>> >>> at >>> org.apache.spark.sql.catalyst.catalog.SessionCatalog.loadTable(SessionCatalog.scala:280) >>> >>> at org.apache.spark.sql.execution.command.LoadData.run(tables.scala:263) >>> >>> at >>> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:57) >>> >>> at >>> org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:55) >>> >>> at >>> org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:69) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136) >>> >>> at >>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) >>> >>> at >>> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133) >>> >>> at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114) >>> >>> at >>> org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:85) >>> >>> at >>> org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:85) >>> >>> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:187) >>> >>> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:168) >>> >>> at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63) >>> >>> at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:541) >>> >>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>> >>> at >>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) >>> >>> at >>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>> >>> at java.lang.reflect.Method.invoke(Method.java:606) >>> >>> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) >>> >>> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) >>> >>> at py4j.Gateway.invoke(Gateway.java:280) >>> >>> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128) >>> >>> at py4j.commands.CallCommand.execute(CallCommand.java:79) >>> >>> at py4j.GatewayConnection.run(GatewayConnection.java:211) >>> >>> at java.lang.Thread.run(Thread.java:745) >>> >>> 2016-05-19 12:49 GMT-07:00 Herman van Hövell tot Westerflier < >>> hvanhov...@questtec.nl>: >>> >>>> +1 >>>> >>>> >>>> 2016-05-19 18:20 GMT+02:00 Xiangrui Meng <m...@databricks.com>: >>>> >>>>> +1 >>>>> >>>>> On Thu, May 19, 2016 at 9:18 AM Joseph Bradley <jos...@databricks.com> >>>>> wrote: >>>>> >>>>>> +1 >>>>>> >>>>>> On Wed, May 18, 2016 at 10:49 AM, Reynold Xin <r...@databricks.com> >>>>>> wrote: >>>>>> >>>>>>> Hi Ovidiu-Cristian , >>>>>>> >>>>>>> The best source of truth is change the filter with target version to >>>>>>> 2.1.0. Not a lot of tickets have been targeted yet, but I'd imagine as >>>>>>> we >>>>>>> get closer to 2.0 release, more will be retargeted at 2.1.0. >>>>>>> >>>>>>> >>>>>>> >>>>>>> On Wed, May 18, 2016 at 10:43 AM, Ovidiu-Cristian MARCU < >>>>>>> ovidiu-cristian.ma...@inria.fr> wrote: >>>>>>> >>>>>>>> Yes, I can filter.. >>>>>>>> Did that and for example: >>>>>>>> >>>>>>>> https://issues.apache.org/jira/browse/SPARK-15370?jql=project%20%3D%20SPARK%20AND%20resolution%20%3D%20Unresolved%20AND%20affectedVersion%20%3D%202.0.0 >>>>>>>> <https://issues.apache.org/jira/browse/SPARK-15370?jql=project%20=%20SPARK%20AND%20resolution%20=%20Unresolved%20AND%20affectedVersion%20=%202.0.0> >>>>>>>> >>>>>>>> To rephrase: for 2.0 do you have specific issues that are not a >>>>>>>> priority and will released maybe with 2.1 for example? >>>>>>>> >>>>>>>> Keep up the good work! >>>>>>>> >>>>>>>> On 18 May 2016, at 18:19, Reynold Xin <r...@databricks.com> wrote: >>>>>>>> >>>>>>>> You can find that by changing the filter to target version = 2.0.0. >>>>>>>> Cheers. >>>>>>>> >>>>>>>> On Wed, May 18, 2016 at 9:00 AM, Ovidiu-Cristian MARCU < >>>>>>>> ovidiu-cristian.ma...@inria.fr> wrote: >>>>>>>> >>>>>>>>> +1 Great, I see the list of resolved issues, do you have a list of >>>>>>>>> known issue you plan to stay with this release? >>>>>>>>> >>>>>>>>> with >>>>>>>>> build/mvn -Pyarn -Phadoop-2.6 -Dhadoop.version=2.7.1 -Phive >>>>>>>>> -Phive-thriftserver -DskipTests clean package >>>>>>>>> >>>>>>>>> mvn -version >>>>>>>>> Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; >>>>>>>>> 2015-11-10T17:41:47+01:00) >>>>>>>>> Maven home: /Users/omarcu/tools/apache-maven-3.3.9 >>>>>>>>> Java version: 1.7.0_80, vendor: Oracle Corporation >>>>>>>>> Java home: >>>>>>>>> /Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home/jre >>>>>>>>> Default locale: en_US, platform encoding: UTF-8 >>>>>>>>> OS name: "mac os x", version: "10.11.5", arch: "x86_64", family: >>>>>>>>> “mac" >>>>>>>>> >>>>>>>>> [INFO] Reactor Summary: >>>>>>>>> [INFO] >>>>>>>>> [INFO] Spark Project Parent POM ........................... >>>>>>>>> SUCCESS [ 2.635 s] >>>>>>>>> [INFO] Spark Project Tags ................................. >>>>>>>>> SUCCESS [ 1.896 s] >>>>>>>>> [INFO] Spark Project Sketch ............................... >>>>>>>>> SUCCESS [ 2.560 s] >>>>>>>>> [INFO] Spark Project Networking ........................... >>>>>>>>> SUCCESS [ 6.533 s] >>>>>>>>> [INFO] Spark Project Shuffle Streaming Service ............ >>>>>>>>> SUCCESS [ 4.176 s] >>>>>>>>> [INFO] Spark Project Unsafe ............................... >>>>>>>>> SUCCESS [ 4.809 s] >>>>>>>>> [INFO] Spark Project Launcher ............................. >>>>>>>>> SUCCESS [ 6.242 s] >>>>>>>>> [INFO] Spark Project Core ................................. >>>>>>>>> SUCCESS [01:20 min] >>>>>>>>> [INFO] Spark Project GraphX ............................... >>>>>>>>> SUCCESS [ 9.148 s] >>>>>>>>> [INFO] Spark Project Streaming ............................ >>>>>>>>> SUCCESS [ 22.760 s] >>>>>>>>> [INFO] Spark Project Catalyst ............................. >>>>>>>>> SUCCESS [ 50.783 s] >>>>>>>>> [INFO] Spark Project SQL .................................. >>>>>>>>> SUCCESS [01:05 min] >>>>>>>>> [INFO] Spark Project ML Local Library ..................... >>>>>>>>> SUCCESS [ 4.281 s] >>>>>>>>> [INFO] Spark Project ML Library ........................... >>>>>>>>> SUCCESS [ 54.537 s] >>>>>>>>> [INFO] Spark Project Tools ................................ >>>>>>>>> SUCCESS [ 0.747 s] >>>>>>>>> [INFO] Spark Project Hive ................................. >>>>>>>>> SUCCESS [ 33.032 s] >>>>>>>>> [INFO] Spark Project HiveContext Compatibility ............ >>>>>>>>> SUCCESS [ 3.198 s] >>>>>>>>> [INFO] Spark Project REPL ................................. >>>>>>>>> SUCCESS [ 3.573 s] >>>>>>>>> [INFO] Spark Project YARN Shuffle Service ................. >>>>>>>>> SUCCESS [ 4.617 s] >>>>>>>>> [INFO] Spark Project YARN ................................. >>>>>>>>> SUCCESS [ 7.321 s] >>>>>>>>> [INFO] Spark Project Hive Thrift Server ................... >>>>>>>>> SUCCESS [ 16.496 s] >>>>>>>>> [INFO] Spark Project Assembly ............................. >>>>>>>>> SUCCESS [ 2.300 s] >>>>>>>>> [INFO] Spark Project External Flume Sink .................. >>>>>>>>> SUCCESS [ 4.219 s] >>>>>>>>> [INFO] Spark Project External Flume ....................... >>>>>>>>> SUCCESS [ 6.987 s] >>>>>>>>> [INFO] Spark Project External Flume Assembly .............. >>>>>>>>> SUCCESS [ 1.465 s] >>>>>>>>> [INFO] Spark Integration for Kafka 0.8 .................... >>>>>>>>> SUCCESS [ 6.891 s] >>>>>>>>> [INFO] Spark Project Examples ............................. >>>>>>>>> SUCCESS [ 13.465 s] >>>>>>>>> [INFO] Spark Project External Kafka Assembly .............. >>>>>>>>> SUCCESS [ 2.815 s] >>>>>>>>> [INFO] >>>>>>>>> ------------------------------------------------------------------------ >>>>>>>>> [INFO] BUILD SUCCESS >>>>>>>>> [INFO] >>>>>>>>> ------------------------------------------------------------------------ >>>>>>>>> [INFO] Total time: 07:04 min >>>>>>>>> [INFO] Finished at: 2016-05-18T17:55:33+02:00 >>>>>>>>> [INFO] Final Memory: 90M/824M >>>>>>>>> [INFO] >>>>>>>>> ------------------------------------------------------------------------ >>>>>>>>> >>>>>>>>> On 18 May 2016, at 16:28, Sean Owen <so...@cloudera.com> wrote: >>>>>>>>> >>>>>>>>> I think it's a good idea. Although releases have been preceded >>>>>>>>> before >>>>>>>>> by release candidates for developers, it would be good to get a >>>>>>>>> formal >>>>>>>>> preview/beta release ratified for public consumption ahead of a new >>>>>>>>> major release. Better to have a little more testing in the wild to >>>>>>>>> identify problems before 2.0.0 is finalized. >>>>>>>>> >>>>>>>>> +1 to the release. License, sigs, etc check out. On Ubuntu 16 + >>>>>>>>> Java >>>>>>>>> 8, compilation and tests succeed for "-Pyarn -Phive >>>>>>>>> -Phive-thriftserver -Phadoop-2.6". >>>>>>>>> >>>>>>>>> On Wed, May 18, 2016 at 6:40 AM, Reynold Xin <r...@apache.org> >>>>>>>>> wrote: >>>>>>>>> >>>>>>>>> Hi, >>>>>>>>> >>>>>>>>> In the past the Apache Spark community have created preview >>>>>>>>> packages (not >>>>>>>>> official releases) and used those as opportunities to ask >>>>>>>>> community members >>>>>>>>> to test the upcoming versions of Apache Spark. Several people in >>>>>>>>> the Apache >>>>>>>>> community have suggested we conduct votes for these preview >>>>>>>>> packages and >>>>>>>>> turn them into formal releases by the Apache foundation's >>>>>>>>> standard. Preview >>>>>>>>> releases are not meant to be functional, i.e. they can and highly >>>>>>>>> likely >>>>>>>>> will contain critical bugs or documentation errors, but we will be >>>>>>>>> able to >>>>>>>>> post them to the project's website to get wider feedback. They >>>>>>>>> should >>>>>>>>> satisfy the legal requirements of Apache's release policy >>>>>>>>> (http://www.apache.org/dev/release.html) such as having proper >>>>>>>>> licenses. >>>>>>>>> >>>>>>>>> >>>>>>>>> Please vote on releasing the following candidate as Apache Spark >>>>>>>>> version >>>>>>>>> 2.0.0-preview. The vote is open until Friday, May 20, 2015 at >>>>>>>>> 11:00 PM PDT >>>>>>>>> and passes if a majority of at least 3 +1 PMC votes are cast. >>>>>>>>> >>>>>>>>> [ ] +1 Release this package as Apache Spark 2.0.0-preview >>>>>>>>> [ ] -1 Do not release this package because ... >>>>>>>>> >>>>>>>>> To learn more about Apache Spark, please see >>>>>>>>> http://spark.apache.org/ >>>>>>>>> >>>>>>>>> The tag to be voted on is 2.0.0-preview >>>>>>>>> (8f5a04b6299e3a47aca13cbb40e72344c0114860) >>>>>>>>> >>>>>>>>> The release files, including signatures, digests, etc. can be >>>>>>>>> found at: >>>>>>>>> >>>>>>>>> http://home.apache.org/~pwendell/spark-releases/spark-2.0.0-preview-bin/ >>>>>>>>> >>>>>>>>> Release artifacts are signed with the following key: >>>>>>>>> https://people.apache.org/keys/committer/pwendell.asc >>>>>>>>> >>>>>>>>> The documentation corresponding to this release can be found at: >>>>>>>>> >>>>>>>>> http://home.apache.org/~pwendell/spark-releases/spark-2.0.0-preview-docs/ >>>>>>>>> >>>>>>>>> The list of resolved issues are: >>>>>>>>> >>>>>>>>> https://issues.apache.org/jira/browse/SPARK-15351?jql=project%20%3D%20SPARK%20AND%20fixVersion%20%3D%202.0.0 >>>>>>>>> >>>>>>>>> >>>>>>>>> If you are a Spark user, you can help us test this release by >>>>>>>>> taking an >>>>>>>>> existing Apache Spark workload and running on this candidate, then >>>>>>>>> reporting >>>>>>>>> any regressions. >>>>>>>>> >>>>>>>>> >>>>>>>>> >>>>>>>>> --------------------------------------------------------------------- >>>>>>>>> To unsubscribe, e-mail: dev-unsubscr...@spark.apache.org >>>>>>>>> For additional commands, e-mail: dev-h...@spark.apache.org >>>>>>>>> >>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>>> >>>>>>> >>>> >>> >> >