On Wednesday, 5 February 2025 at 21:24:51 UTC, Jabari Zakiya
wrote:
On Tuesday, 4 February 2025 at 17:17:42 UTC, Jabari Zakiya
wrote:
On Monday, 3 February 2025 at 04:59:43 UTC, monkyyy wrote:
On Monday, 3 February 2025 at 04:15:09 UTC, Jabari Zakiya
wrote:
I translated this Ruby code:
FYI.
This code finds all the prime pairs that sum to n for all even
integers n > 2.
It (Ruby code) is included in a paper I just released (Feb 2,
2025) on Goldbach's Conjecture (1742) and Bertrand's Postulate
(1845). For those interested in Prime|Number Theory check it
out. A lot of new, good, stuff is in it!
**Proof of Goldbach's Conjecture and Bertrand's Postulate
Using Prime Generator Theory (PGT)**
https://www.academia.edu/127404211/Proof_of_Goldbachs_Conjecture_and_Bertrands_Postulate_Using_Prime_Generator_Theory_PGT_
I updated the code to make entering data easier.
It now mimics the Ruby|Crystal code and takes "humanized" data
strings.
You can now run the code as: `$ ./primes_pair_lohi_u32
123_456_780`
I also created two versions, one for u32 input values, and one
for u64.
Unless you have lots of memmory, the u32 version is best to use.
Here's the u32 input size version.
// Compile with ldc2: $ ldc2 --release -O3 -mcpu native
prime_pairs_lohi_u32.d
// Run as: $ ./prime_pairs_lohi_u32 123_456_780
module prime_pairs;
import std;
import std.datetime.stopwatch : StopWatch;
void prime_pairs_lohi(uint n) { // inputs can be of size
u32
if ((n&1) == 1 || n < 4) { return writeln("Input not even
n > 2"); }
if (n <= 6) { writeln([n, 1]); writeln([n/2, n/2]);
writeln([n/2, n/2]); return; }
// generate the low-half-residues (lhr) r < n/2
auto ndiv2 = n/2; // llr:hhr midpoint
auto rhi = n-2; // max residue limit
uint[] lhr = iota(3, ndiv2, 2).filter!(e => gcd(e, n) ==
1).array;
// store all the powers of the lhr members < n-2
uint[] lhr_mults; // for lhr values not
part of a pcp
foreach(r; lhr) { // step thru the lhr
members
auto r_pwr = r; // set to first power of r
if (r > rhi/r_pwr) break; // exit if r^2 > n-2, as
all others are too
while (r < rhi/r_pwr) // while r^e < n-2
lhr_mults ~=(r_pwr *= r); // store its current
power of rA
}
// store all the cross-products of the lhr members < n-2
foreach(i, r; lhr) {
auto ri_max = rhi / r; // ri can't multiply r
with values > this
if (lhr[i+1] > ri_max) break; // exit if product of
consecutive r’s > n-2
foreach(ri; lhr[i+1..$]) { // for each residue in
reduced list
if (ri > ri_max) break; // exit for r if
cross-product with ri > n-2
lhr_mults ~= r * ri; // store value if < n-2
} }
// convert lhr_mults vals > n/2 to their lhr complements
n-r,
// store them, those < n/2, in lhr_del; it now holds
non-pcp lhr vals
auto lhr_del = lhr_mults.map!((r_del) => r_del > ndiv2 ?
n - r_del : r_del).array;
lhr_del.sort!("a < b");
lhr = setDifference(lhr, lhr_del).array;
writeln([n, lhr.length]); // show n and pcp prime
pairs count
writeln([lhr[0], n-lhr[0]]); // show first pcp prime
pair of n
writeln([lhr[$-1],n-lhr[$-1]]); // show last pcp prime
pair of n
}
void main(string[] args) { // directly recieve input
from terminal
string[] inputs = args[1..$]; // can include '_':
123_456
auto nums = inputs.map!(i => i.filter!(n => n != '_'));
auto n = nums.map!(f => f.to!uint())[0];
auto timer = StopWatch(); // create execution timer
timer.start(); // start it
prime_pairs_lohi(n); // run routine
writeln(timer.peek()); // show timer results
}
I've updated the code to make it shorter|simpler.
```
module prime_pairs;
import std;
import std.datetime.stopwatch : StopWatch;
void prime_pairs_lohi(uint n) { // inputs can be of size u32
if ((n&1) == 1 || n < 4) { return writeln("Input not even n >
2"); }
if (n <= 6) { writeln([n, 1]); writeln([n/2, n/2]);
writeln([n/2, n/2]); return; }
// generate the low-half-residues (lhr) r < n/2
auto ndiv2 = n/2; // llr:hhr midpoint
auto rhi = n-2; // max residue limit
uint[] lhr = iota(3, ndiv2, 2).filter!(e => gcd(e, n) ==
1).array;
// store all powers and cross-products of the lhr members < n-2
uint[] lhr_mults; // lhr multiples, not part of a
pcp
foreach(i, r; lhr) {
auto rmax = rhi / r; // ri can't multiply r with
values > this
if (r < rmax) lhr_mults ~= r*r; // for r^2 multiples
if (lhr[i+1] > rmax) break ; // exit if product of
consecutive r’s > n-2
foreach(ri; lhr[i+1..$]) { // for each residue in reduced
list
if (ri > rmax) break; // exit for r if cross-product
with ri > n-2
lhr_mults ~= r * ri; // store value if < n-2
} }
// convert lhr_mults vals > n/2 to their lhr complements n-r,
// store them, those < n/2, in lhr_del; it now holds non-pcp
lhr vals
auto lhr_del = lhr_mults.map!((r_del) => r_del > ndiv2 ? n -
r_del : r_del).array;
lhr_del.sort!("a < b");
lhr = setDifference(lhr, lhr_del).array; // lhr now contains
just pcp primes
writeln([n, lhr.length]); // show n and pcp prime pairs
count
writeln([lhr[0], n-lhr[0]]); // show first pcp prime pair of
n
writeln([lhr[$-1],n-lhr[$-1]]); // show last pcp prime pair of
n
}
void main(string[] args) { // directly recieve input from
terminal
string[] inputs = args[1..$]; // can include '_': 123_456
auto nums = inputs.map!(i => i.filter!(n => n != '_'));
auto n = nums.map!(f => f.to!uint())[0];
auto timer = StopWatch(); // create execution timer
timer.start(); // start it
prime_pairs_lohi(n); // run routine
writeln(timer.peek()); // show timer results
}
```