Michael-

I'm trying to "calibrate" the flow-graph of the am_rcv_plasma_mod.py so that the values displayed in the final window represent actual input amplitudes.

The first step to do this would be to account for the internal gain; so I need to divide through by a factor of 10^(gain) where gain is in db. To implement this I define:

self.gain_correction = gr.divide_ff(math.log10(self.gain))

and later I implement it as follows:

self.connect (self.magblock, self.gain_correction)

and

        if plot3:
self.scope = scopesink.scope_sink_f(self, self.panel, title="AM Demodulated Time Series", sample_rate=demod_rate, size=(50,100), t_scale=1.0e-3, v_scale=None, vbox=vbox)
            self.connect(self.gain_correction, self.scope)


but I get the error:

File "am_rcv_plasma_mod.py", line 95, in __init__
    self.gain_correction = gr.divide_ff(math.log10(self.gain))
AttributeError: 'am_plasma_rx_graph' object has no attribute 'gain'

How do I "grab" whatever the current value of the gain is and use it to divide through? The gain will be set by either the mouse or the powermate device.

Any thoughts?
thanks,
eric

************************************
Eric H. Matlis, Ph.D.
Aerospace & Mechanical Engineering Dept.
120 Hessert Center for Aerospace Research
University of Notre Dame
Notre Dame, IN 46556-5684
Phone: (574) 631-6054
Fax:   (574) 631-8355

On Fri, 16 Mar 2007, Michael Dickens wrote:

On Mar 16, 2007, at 12:01 PM, [EMAIL PROTECTED] wrote:
1) do you happen to know where the default values for the control buttons are set? I'd like to change the time scale from 100us/div to 1ms/div and to set the Autorange to "on" by default.

In your "am_..." file, change the "scope_sink_f" call to inside "_build_gui", "if plot3:":

self.scope = scopesink.scope_sink_f(self, self.panel, title="AM Demodulated Time Series", sample_rate=demod_rate, size=(50,100), t_scale=1.0e-3, v_scale=None)

the last 2 items set the time scale and autorange as you want.

2) do you know how to convert the integer values on the third window (time-series) to actual voltage values as measured by the adc? It must be a function of the internal gain and offset. I need to know these eventually; this application is supposed to measure physical voltages, not just produce sounds.

Not sure of this.  Maybe whoever wrote the script knows? - MLD
#!/usr/bin/env python

#import scopesink_mod as scopesink

from gnuradio import gr, gru, eng_notation, optfir

from gnuradio import audio

from gnuradio import usrp

from gnuradio import blks

from gnuradio.eng_option import eng_option

from gnuradio.wxgui import slider, powermate

from gnuradio.wxgui import stdgui, form, fftsink

from optparse import OptionParser

import usrp_dbid

import sys

import math

import wx

import wx.lib.evtmgr as em

import scopesink_mod as scopesink



def pick_subdevice(u):

    """

    The user didn't specify a subdevice on the command line.

    Try for one of these, in order: TV_RX, BASIC_RX, whatever is on side A.



    @return a subdev_spec

    """

    return usrp.pick_subdev(u, (usrp_dbid.TV_RX,

                                usrp_dbid.TV_RX_REV_2,

                                usrp_dbid.BASIC_RX))





plot1 = 1

plot2 = 1

plot3 = 1



class am_plasma_rx_graph (stdgui.gui_flow_graph):

    def __init__(self,frame,panel,vbox,argv):

        stdgui.gui_flow_graph.__init__ (self,frame,panel,vbox,argv)



        parser=OptionParser(option_class=eng_option)

        parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None,

                          help="select USRP Rx side A or B (default=A)")

        parser.add_option("-f", "--freq", type="eng_float", default=3e6,

                          help="set frequency to FREQ", metavar="FREQ")

        parser.add_option("-g", "--gain", type="int", default=10,

                          help="set gain in dB (default is midpoint)")

        parser.add_option("-O", "--audio-output", type="string", default="",

                          help="pcm device name.  E.g., hw:0,0 or surround51 or 
/dev/dsp")



        (options, args) = parser.parse_args()

        if len(args) != 0:

            parser.print_help()

            sys.exit(1)

        

        self.frame = frame

        self.panel = panel

        

        self.vol = 0

        self.state = "FREQ"

        self.freq = 0



        # build graph

        

        self.u = usrp.source_c()                    # usrp is data source



        adc_rate = self.u.adc_rate()                # 64 MS/s

        usrp_decim = 250

        self.u.set_decim_rate(usrp_decim)

        usrp_rate = adc_rate / usrp_decim           # 256 kS/s

        chanfilt_decim = 16

        #chanfilt_decim = 512

        demod_rate = usrp_rate / chanfilt_decim     # 16 kHz

        audio_decimation = 1

        audio_rate = demod_rate / audio_decimation  # 16 kHz





        if options.rx_subdev_spec is None:

            options.rx_subdev_spec = pick_subdevice(self.u)



        # Select USRP channel (0)

        self.u.set_mux(usrp.determine_rx_mux_value(self.u, 
options.rx_subdev_spec))

        # Tune to the desired IF frequency

        self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)



        # Channelize the signal of interest.

        chan_filt_coeffs = gr.firdes.low_pass (1,           # gain

                                            usrp_rate,   # sampling rate

                                            #1000,

                                            6000,        # passband cutoff

                                            500,       # stopband cutoff

                                            gr.firdes.WIN_HANN)

        self.lpfilter =  gr.fir_filter_ccf (chanfilt_decim,chan_filt_coeffs)



        # Demodulate with classic sqrt (I*I + Q*Q)

        self.magblock = gr.complex_to_mag()

        self.volume_control = gr.multiply_const_ff(self.vol)

        self.gain_correction = gr.divide_ff(math.log10(self.gain))



        # Deemphasis.  Is this necessary on AM?

        #TAU  = 75e-6  # 75us in US, 50us in EUR

        #fftaps = [ 1 - math.exp(-1/TAU/usrp_rate), 0]

        #fbtaps= [ 0 , math.exp(-1/TAU/usrp_rate) ]

        

        #self.deemph = gr.iir_filter_ffd(fftaps,fbtaps)



        # sound card as final sink

        audio_sink = audio.sink (int (audio_rate),

                                 options.audio_output,

                                 False)   # ok_to_block

        

        # now wire it all together

        self.connect (self.u, self.lpfilter)

        self.connect (self.lpfilter, self.magblock)

        self.connect (self.magblock, self.gain_correction)

        self.connect (self.gain_correction, self.volume_control)

        self.connect (self.volume_control, (audio_sink, 0))



        #self.connect (self.volume_control, audio_filter)

        #self.connect (audio_filter, (audio_sink, 0))

        #self.connect (self.volume_control,self.deemph)

        #self.connect (self.deemph,audio_filter)

        #self.connect (audio_filter, (audio_sink, 0))



        self._build_gui(vbox, usrp_rate, demod_rate, audio_rate)





        if options.gain is None:

            # if no gain was specified, use the mid-point in dB

            g = self.subdev.gain_range()

            options.gain = float(g[0]+g[1])/2



        if abs(options.freq) < 1e6:

            options.freq *= 1e6



        # set initial values



        self.set_gain(options.gain)

        if not(self.set_freq(options.freq)):

            self._set_status_msg("Failed to set initial frequency")

 



    def _set_status_msg(self, msg, which=0):

        self.frame.GetStatusBar().SetStatusText(msg, which)





    def _build_gui(self, vbox, usrp_rate, demod_rate, audio_rate):



        def _form_set_freq(kv):

            return self.set_freq(kv['freq'])





        if plot1:

            self.src_fft = fftsink.fft_sink_c (self, self.panel, title="Raw 
Spectrum From Sensor",

                                               fft_size=1024, 
sample_rate=usrp_rate, size=(50,200))

            self.connect (self.u, self.src_fft)

            vbox.Add (self.src_fft.win, 1, wx.EXPAND)



        if plot2:

            self.post_filt = fftsink.fft_sink_f (self, self.panel, title="AM 
Demodulated Spectrum", fft_size=1024, sample_rate=demod_rate, size=(50,100))

            self.connect (self.magblock,self.post_filt)

            vbox.Add (self.post_filt.win, 1, wx.EXPAND)



        if plot3:

            self.scope = scopesink.scope_sink_f(self, self.panel, title="AM 
Demodulated Time Series", sample_rate=demod_rate, size=(50,100), 
t_scale=1.0e-3, v_scale=None, vbox=vbox)

            self.connect(self.gain_correction, self.scope)

            vbox.Add (self.scope.win, 1, wx.EXPAND)





        # control area form at bottom

        self.myform = myform = form.form()

        hbox = wx.BoxSizer(wx.HORIZONTAL)

        hbox.Add((5,0), 0)

        myform['freq'] = form.float_field(

            parent=self.panel, sizer=hbox, label="Carrier Freq", weight=1,

            callback=myform.check_input_and_call(_form_set_freq, 
self._set_status_msg))



        hbox.Add((5,0), 0)

        myform['freq_slider'] = \

            form.quantized_slider_field(parent=self.panel, sizer=hbox, weight=3,

                                        range=(.5e6, 3.5e6, 0.001e6),

                                        callback=self.set_freq)

        hbox.Add((5,0), 0)

        vbox.Add(hbox, 0, wx.EXPAND)



        hbox = wx.BoxSizer(wx.HORIZONTAL)

        hbox.Add((5,0), 0)

        

        myform['gain'] = \

            form.quantized_slider_field(parent=self.panel, sizer=hbox, 
label="Gain",

                                        weight=3, 
range=self.subdev.gain_range(),

                                        callback=self.set_gain)

        hbox.Add((5,0), 0)

        vbox.Add(hbox, 0, wx.EXPAND)



        try:

            self.knob = powermate.powermate(self.frame)

            self.rot = 0

            powermate.EVT_POWERMATE_ROTATE (self.frame, self.on_rotate)

            powermate.EVT_POWERMATE_BUTTON (self.frame, self.on_button)

        except:

            print "FYI: No Powermate or Contour Knob found"





    def on_rotate (self, event):

        self.rot += event.delta

        if (self.state == "FREQ"):

            if self.rot >= 3:

                self.set_freq(self.freq + .001e6)

                self.rot -= 3

            elif self.rot <=-3:

                self.set_freq(self.freq - .001e6)

                self.rot += 3

        else:

            step = self.subdev.gain_range()[2]

            if self.rot >= 3:

                self.set_gain(self.gain + step)

                self.rot -= 3

            elif self.rot <=-3:

                self.set_gain(self.gain - step)

                self.rot += 3

            self.update_status_bar ()

            

    def on_button (self, event):

        if event.value == 0:        # button up

            return

        self.rot = 0

        if self.state == "FREQ":

            self.state = "GAIN"

        else:

            self.state = "FREQ"

        self.update_status_bar ()

        

                                        

    def set_freq(self, target_freq):

        """

        Set the center frequency we're interested in.



        @param target_freq: frequency in Hz

        @rypte: bool



        Tuning is a two step process.  First we ask the front-end to

        tune as close to the desired frequency as it can.  Then we use

        the result of that operation and our target_frequency to

        determine the value for the digital down converter.

        """

        r = usrp.tune(self.u, 0, self.subdev, target_freq)

        

        if r:

            self.freq = target_freq

            self.myform['freq'].set_value(target_freq)         # update 
displayed value

            self.myform['freq_slider'].set_value(target_freq)  # update 
displayed value

            self.update_status_bar()

            self._set_status_msg("OK", 0)

            return True



        self._set_status_msg("Failed", 0)

        return False



    def set_gain(self, gain):

        self.gain=gain

        self.myform['gain'].set_value(gain)     # update displayed value

        self.subdev.set_gain(gain)

        self.update_status_bar ()



    def update_status_bar (self):

        msg = "Gain:%r  Setting:%s" % (self.gain, self.state)

        self._set_status_msg(msg, 1)

        if plot1: 

          self.src_fft.set_baseband_freq(self.freq)



    def gain_range(self):

        return (0, 20, 1)





if __name__ == '__main__':

    app = stdgui.stdapp (am_plasma_rx_graph, "USRP PLASMA AM RX")

    app.MainLoop ()



_______________________________________________
Discuss-gnuradio mailing list
Discuss-gnuradio@gnu.org
http://lists.gnu.org/mailman/listinfo/discuss-gnuradio

Reply via email to