Dear Timo,I actually had 1x4 grid, so the "inner" two elements were connected to walls but not to inlet/outlet boundaries.
Here is a similar example (attached), but with 4x4 grid, with capillary pressure restored, and with initial sn = 0.5. Hope it helps.
Best regards, Dmitry On 05.04.2020 12:40, Timo Koch wrote:
Dear Dmitry, Thank you so much for your detailed investigation.I’m pretty convinced from your output that the analytical Jacobian is currently wrong. (It is also currently untested.) In case you don’t know how to interpret the output: The matrix is blocked into primary variable blocks (in this case 2x2 sub matrices). So e.g. the first and second entries in row 0 and 1 are the subblock of the derivatives of element 0 residuals (wetting, non-wetting phase balance) with respect to the dofs in element 0.(0,0) -> drw/dpw (1,0) -> drn/dpw (0,1) -> drw/dsn (1,1) -> drn/dsnLooking at the storage derivative (twopincompressiblelocalresidual.hh) I’m pretty sure the sign is wrong for drn/dsn. There may be further mistakes in the fluxes.Your grid was 2x2 I assume from the matrix. That means that all element are connected to a boundary. Could you post the same output for a 4x4 grid? So we can better isolate how entries of inner cells differ? Also some effects don’t show if one of the saturations is zero because some term drop out. Can you start with sn=0.5?Best wishes Timo -- _________________________________________________ Timo Koch phone: +49 711 685 64676 IWS, Universität Stuttgart fax: +49 711 685 60430Pfaffenwaldring 61 email: [email protected] <mailto:[email protected]> D-70569 Stuttgart url: www.iws.uni-stuttgart.de/en/lh2/ <http://www.iws.uni-stuttgart.de/en/lh2/>_________________________________________________On 4. Apr 2020, at 12:48, Dmitry Pavlov <[email protected] <mailto:[email protected]>> wrote:Hello,I just ran into a weird problem with DuMux 3.1. As I reported before, I was having trouble replacing the numeric derivatives with my own analytic ones. Now I made a very small and simplified example and made some debug printing to track down the issue.The problem being solved is 2p (TwoPIncompressibleLocalResidual), fully implicit scheme. The assembler is FVAssembler<TypeTag, DiffMethod::numeric>. The boundary conditions are: neumann (injection well), all Dirichlet (production well). No customary flux derivatives, no other fancy stuff.Here is the first output of the debug printing that I added into NewtonSolver::solveLinearSystem_:Jacobian [n=4,m=4,rowdim=8,coldim=8]row 0 5.20412e-12 -7.65000e+09 -5.10436e-12 0.00000e+00 . . . . row 1 2.43297e-09 6.50250e+09 -2.43297e-09 0.00000e+00 . . . . row 2 -5.10436e-12 0.00000e+00 1.02087e-11 -7.65000e+09 -5.10436e-12 0.00000e+00 . . row 3 -2.43297e-09 0.00000e+00 4.86593e-09 6.50250e+09 -2.43297e-09 0.00000e+00 . . row 4 . . -5.10436e-12 0.00000e+00 1.02087e-11 -7.65000e+09 -5.10436e-12 0.00000e+00 row 5 . . -2.43297e-09 0.00000e+00 4.86593e-09 6.50250e+09 -2.43297e-09 0.00000e+00 row 6 . . . . -5.10436e-12 0.00000e+00 1.53131e-11 -7.65000e+09 row 7 . . . . -2.43297e-09 0.00000e+00 7.29888e-09 6.50250e+09residual [blocks=4,dimension=8]row 0 -2.17e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.02e-06 4.87e-04And the simulation goes fine after that (more or less). And here is what the first debug output becomes when I use FVAssembler<TypeTag, DiffMethod::analytic> instead:Jacobian [n=4,m=4,rowdim=8,coldim=8]row 0 5.10435e-12 -7.65000e+09 -5.10435e-12 0.00000e+00 . . . . row 1 2.43296e-09 -6.50250e+09 -2.43296e-09 0.00000e+00 . . . . row 2 -5.10435e-12 0.00000e+00 1.02087e-11 -7.65000e+09 -5.10435e-12 0.00000e+00 . . row 3 -2.43296e-09 0.00000e+00 4.86593e-09 -6.50250e+09 -2.43296e-09 0.00000e+00 . . row 4 . . -5.10435e-12 0.00000e+00 1.02087e-11 -7.65000e+09 -5.10435e-12 0.00000e+00 row 5 . . -2.43296e-09 0.00000e+00 4.86593e-09 -6.50250e+09 -2.43296e-09 0.00000e+00 row 6 . . . . -5.10435e-12 0.00000e+00 1.53131e-11 -7.65000e+09 row 7 . . . . -2.43296e-09 0.00000e+00 7.29889e-09 -6.50250e+09residual [blocks=4,dimension=8]row 0 -2.17e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.02e-06 4.87e-04And the simulation stucks instantly. You see that the odd diagonal elements have the opposite signs as compared to the ones of the analytic Jacobian.Did I run into a bug? Did I misuse DuMux? I will appreciate any comments. Best regards, Dmitry _______________________________________________ Dumux mailing list [email protected] <mailto:[email protected]> https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
[KJacobian [n=16,m=16,rowdim=32,coldim=32]
row 0 9.24731e-09 -1.91250e+09 -3.14060e-10 0.00000e+00 .
. . . -8.93325e-09 0.00000e+00
. . . . . .
. . . . . .
. . . . .
. . . . .
row 1 3.95762e-10 -1.62562e+09 -1.34410e-11 -1.10144e-05 .
. . . -3.82321e-10 -3.13299e-04
. . . . . .
. . . . . .
. . . . .
. . . . .
row 2 -3.14060e-10 0.00000e+00 9.56137e-09 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
-8.93325e-09 0.00000e+00 . . .
. . . . . .
. . . . . .
. . . . .
row 3 -1.34410e-11 -1.10144e-05 4.09203e-10 -1.62562e+09 -1.34410e-11
-1.10144e-05 . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . . . .
. . . . . .
. . . . .
row 4 . . -3.14060e-10 0.00000e+00 9.56137e-09
-1.91250e+09 -3.14060e-10 0.00000e+00 . .
. . -8.93325e-09 0.00000e+00 . .
. . . . . .
. . . . .
. . . . .
row 5 . . -1.34410e-11 -1.10144e-05 4.09203e-10
-1.62562e+09 -1.34410e-11 -1.10144e-05 . .
. . -3.82321e-10 -3.13299e-04 . .
. . . . . .
. . . . .
. . . . .
row 6 . . . . -3.14060e-10
0.00000e+00 9.87543e-09 -1.91250e+09 . .
. . . . -8.93325e-09 0.00000e+00
. . . . . .
. . . . .
. . . . .
row 7 . . . . -1.34410e-11
-1.10144e-05 1.61224e-09 -1.62562e+09 . .
. . . . -3.82321e-10 -3.13299e-04
. . . . . .
. . . . .
. . . . .
row 8 -8.93325e-09 0.00000e+00 . . .
. . . 1.81806e-08 -1.91250e+09
-3.14060e-10 0.00000e+00 . . .
. -8.93325e-09 0.00000e+00 . . .
. . . . . .
. . . . .
row 9 -3.82321e-10 -3.13299e-04 . . .
. . . 7.78083e-10 -1.62562e+09
-1.34410e-11 -1.10144e-05 . . .
. -3.82321e-10 -3.13299e-04 . . .
. . . . . .
. . . . .
row 10 . . -8.93325e-09 0.00000e+00 .
. . . -3.14060e-10 0.00000e+00
1.84946e-08 -1.91250e+09 -3.14060e-10 0.00000e+00 .
. . . -8.93325e-09 0.00000e+00 .
. . . . . .
. . . . .
row 11 . . -3.82321e-10 -3.13299e-04 .
. . . -1.34410e-11 -1.10144e-05
7.91524e-10 -1.62562e+09 -1.34410e-11 -1.10144e-05 .
. . . -3.82321e-10 -3.13299e-04 .
. . . . . .
. . . . .
row 12 . . . . -8.93325e-09
0.00000e+00 . . . .
-3.14060e-10 0.00000e+00 1.84946e-08 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
-8.93325e-09 0.00000e+00 . . .
. . . . . .
.
row 13 . . . . -3.82321e-10
-3.13299e-04 . . . .
-1.34410e-11 -1.10144e-05 7.91524e-10 -1.62562e+09 -1.34410e-11
-1.10144e-05 . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . . . .
.
row 14 . . . . .
. -8.93325e-09 0.00000e+00 . .
. . -3.14060e-10 0.00000e+00 1.88087e-08 -1.91250e+09
. . . . . .
-8.93325e-09 0.00000e+00 . . .
. . . . .
row 15 . . . . .
. -3.82321e-10 -3.13299e-04 . .
. . -1.34410e-11 -1.10144e-05 1.99456e-09 -1.62562e+09
. . . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . . .
row 16 . . . . .
. . . -8.93325e-09 0.00000e+00
. . . . . .
1.81806e-08 -1.91250e+09 -3.14060e-10 0.00000e+00 .
. . . -8.93325e-09 0.00000e+00 .
. . . . .
row 17 . . . . .
. . . -3.82321e-10 -3.13299e-04
. . . . . .
7.78083e-10 -1.62562e+09 -1.34410e-11 -1.10144e-05 .
. . . -3.82321e-10 -3.13299e-04 .
. . . . .
row 18 . . . . .
. . . . .
-8.93325e-09 0.00000e+00 . . .
. -3.14060e-10 0.00000e+00 1.84946e-08 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
-8.93325e-09 0.00000e+00 . . .
.
row 19 . . . . .
. . . . .
-3.82321e-10 -3.13299e-04 . . .
. -1.34410e-11 -1.10144e-05 7.91524e-10 -1.62562e+09 -1.34410e-11
-1.10144e-05 . . . .
-3.82321e-10 -3.13299e-04 . . .
.
row 20 . . . . .
. . . . .
. . -8.93325e-09 0.00000e+00 . .
. . -3.14060e-10 0.00000e+00 1.84946e-08 -1.91250e+09
-3.14060e-10 0.00000e+00 . . .
. -8.93325e-09 0.00000e+00 . .
row 21 . . . . .
. . . . .
. . -3.82321e-10 -3.13299e-04 . .
. . -1.34410e-11 -1.10144e-05 7.91524e-10 -1.62562e+09
-1.34410e-11 -1.10144e-05 . . .
. -3.82321e-10 -3.13299e-04 . .
row 22 . . . . .
. . . . .
. . . . -8.93325e-09 0.00000e+00
. . . . -3.14060e-10 0.00000e+00
1.88087e-08 -1.91250e+09 . . .
. . . -8.93325e-09 0.00000e+00
row 23 . . . . .
. . . . .
. . . . -3.82321e-10 -3.13299e-04
. . . . -1.34410e-11 -1.10144e-05
1.99456e-09 -1.62562e+09 . . .
. . . -3.82321e-10 -3.13299e-04
row 24 . . . . .
. . . . .
. . . . . .
-8.93325e-09 0.00000e+00 . . .
. . . 9.24731e-09 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
row 25 . . . . .
. . . . .
. . . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . 3.95762e-10 -1.62562e+09 -1.34410e-11
-1.10144e-05 . . . .
row 26 . . . . .
. . . . .
. . . . . .
. . -8.93325e-09 0.00000e+00 . .
. . -3.14060e-10 0.00000e+00 9.56137e-09
-1.91250e+09 -3.14060e-10 0.00000e+00 . .
row 27 . . . . .
. . . . .
. . . . . .
. . -3.82321e-10 -3.13299e-04 . .
. . -1.34410e-11 -1.10144e-05 4.09203e-10
-1.62562e+09 -1.34410e-11 -1.10144e-05 . .
row 28 . . . . .
. . . . .
. . . . . .
. . . . -8.93325e-09 0.00000e+00
. . . . -3.14060e-10
0.00000e+00 9.56137e-09 -1.91250e+09 -3.14060e-10 0.00000e+00
row 29 . . . . .
. . . . .
. . . . . .
. . . . -3.82321e-10 -3.13299e-04
. . . . -1.34410e-11
-1.10144e-05 4.09203e-10 -1.62562e+09 -1.34410e-11 -1.10144e-05
row 30 . . . . .
. . . . .
. . . . . .
. . . . . .
-8.93325e-09 0.00000e+00 . . .
. -3.14060e-10 0.00000e+00 9.87543e-09 -1.91250e+09
row 31 . . . . .
. . . . .
. . . . . .
. . . . . .
-3.82321e-10 -3.13299e-04 . . .
. -1.34410e-11 -1.10144e-05 1.61224e-09 -1.62562e+09
residual [blocks=16,dimension=32]
row 0 -5.43e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.28e-05
-1.18e-03 -5.43e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00
row 13 0.00e+00 6.28e-05 -1.18e-03 -5.43e-03 0.00e+00 0.00e+00 0.00e+00
0.00e+00 0.00e+00 6.28e-05 -1.18e-03 -5.43e-03 0.00e+00
row 26 0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.28e-05 -1.18e-03
answer [blocks=16,dimension=32]
row 0 -4.96e+07 -1.50e-13 -3.14e+07 2.59e-28 -1.32e+07 -3.33e-26 4.96e+06
4.58e-12 -4.96e+07 -1.50e-13 -3.14e+07 2.00e-27 -1.32e+07
row 13 -3.32e-26 4.96e+06 4.58e-12 -4.96e+07 -1.50e-13 -3.14e+07 6.99e-28
-1.32e+07 -3.34e-26 4.96e+06 4.58e-12 -4.96e+07 -1.50e-13
row 26 -3.14e+07 1.86e-27 -1.32e+07 -3.31e-26 4.96e+06 4.58e-12
[KJacobian [n=16,m=16,rowdim=32,coldim=32]
row 0 9.24728e-09 -1.91250e+09 -3.14060e-10 0.00000e+00 .
. . . -8.93326e-09 0.00000e+00
. . . . . .
. . . . . .
. . . . .
. . . . .
row 1 3.95762e-10 1.62563e+09 -1.34410e-11 -1.10144e-05 .
. . . -3.82321e-10 -3.13299e-04
. . . . . .
. . . . . .
. . . . .
. . . . .
row 2 -3.14060e-10 0.00000e+00 9.56138e-09 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
-8.93326e-09 0.00000e+00 . . .
. . . . . .
. . . . . .
. . . . .
row 3 -1.34410e-11 -1.10144e-05 4.09203e-10 1.62563e+09 -1.34410e-11
-1.10144e-05 . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . . . .
. . . . . .
. . . . .
row 4 . . -3.14060e-10 0.00000e+00 9.56138e-09
-1.91250e+09 -3.14060e-10 0.00000e+00 . .
. . -8.93326e-09 0.00000e+00 . .
. . . . . .
. . . . .
. . . . .
row 5 . . -1.34410e-11 -1.10144e-05 4.09203e-10
1.62563e+09 -1.34410e-11 -1.10144e-05 . .
. . -3.82321e-10 -3.13299e-04 . .
. . . . . .
. . . . .
. . . . .
row 6 . . . . -3.14060e-10
0.00000e+00 9.87544e-09 -1.91250e+09 . .
. . . . -8.93326e-09 0.00000e+00
. . . . . .
. . . . .
. . . . .
row 7 . . . . -1.34410e-11
-1.10144e-05 1.61226e-09 1.62563e+09 . .
. . . . -3.82321e-10 -3.13299e-04
. . . . . .
. . . . .
. . . . .
row 8 -8.93326e-09 0.00000e+00 . . .
. . . 1.81805e-08 -1.91250e+09
-3.14060e-10 0.00000e+00 . . .
. -8.93326e-09 0.00000e+00 . . .
. . . . . .
. . . . .
row 9 -3.82321e-10 -3.13299e-04 . . .
. . . 7.78083e-10 1.62563e+09
-1.34410e-11 -1.10144e-05 . . .
. -3.82321e-10 -3.13299e-04 . . .
. . . . . .
. . . . .
row 10 . . -8.93326e-09 0.00000e+00 .
. . . -3.14060e-10 0.00000e+00
1.84946e-08 -1.91250e+09 -3.14060e-10 0.00000e+00 .
. . . -8.93326e-09 0.00000e+00 .
. . . . . .
. . . . .
row 11 . . -3.82321e-10 -3.13299e-04 .
. . . -1.34410e-11 -1.10144e-05
7.91524e-10 1.62563e+09 -1.34410e-11 -1.10144e-05 .
. . . -3.82321e-10 -3.13299e-04 .
. . . . . .
. . . . .
row 12 . . . . -8.93326e-09
0.00000e+00 . . . .
-3.14060e-10 0.00000e+00 1.84946e-08 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
-8.93326e-09 0.00000e+00 . . .
. . . . . .
.
row 13 . . . . -3.82321e-10
-3.13299e-04 . . . .
-1.34410e-11 -1.10144e-05 7.91524e-10 1.62563e+09 -1.34410e-11
-1.10144e-05 . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . . . .
.
row 14 . . . . .
. -8.93326e-09 0.00000e+00 . .
. . -3.14060e-10 0.00000e+00 1.88087e-08 -1.91250e+09
. . . . . .
-8.93326e-09 0.00000e+00 . . .
. . . . .
row 15 . . . . .
. -3.82321e-10 -3.13299e-04 . .
. . -1.34410e-11 -1.10144e-05 1.99459e-09 1.62563e+09
. . . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . . .
row 16 . . . . .
. . . -8.93326e-09 0.00000e+00
. . . . . .
1.81805e-08 -1.91250e+09 -3.14060e-10 0.00000e+00 .
. . . -8.93326e-09 0.00000e+00 .
. . . . .
row 17 . . . . .
. . . -3.82321e-10 -3.13299e-04
. . . . . .
7.78083e-10 1.62563e+09 -1.34410e-11 -1.10144e-05 .
. . . -3.82321e-10 -3.13299e-04 .
. . . . .
row 18 . . . . .
. . . . .
-8.93326e-09 0.00000e+00 . . .
. -3.14060e-10 0.00000e+00 1.84946e-08 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
-8.93326e-09 0.00000e+00 . . .
.
row 19 . . . . .
. . . . .
-3.82321e-10 -3.13299e-04 . . .
. -1.34410e-11 -1.10144e-05 7.91524e-10 1.62563e+09 -1.34410e-11
-1.10144e-05 . . . .
-3.82321e-10 -3.13299e-04 . . .
.
row 20 . . . . .
. . . . .
. . -8.93326e-09 0.00000e+00 . .
. . -3.14060e-10 0.00000e+00 1.84946e-08 -1.91250e+09
-3.14060e-10 0.00000e+00 . . .
. -8.93326e-09 0.00000e+00 . .
row 21 . . . . .
. . . . .
. . -3.82321e-10 -3.13299e-04 . .
. . -1.34410e-11 -1.10144e-05 7.91524e-10 1.62563e+09
-1.34410e-11 -1.10144e-05 . . .
. -3.82321e-10 -3.13299e-04 . .
row 22 . . . . .
. . . . .
. . . . -8.93326e-09 0.00000e+00
. . . . -3.14060e-10 0.00000e+00
1.88087e-08 -1.91250e+09 . . .
. . . -8.93326e-09 0.00000e+00
row 23 . . . . .
. . . . .
. . . . -3.82321e-10 -3.13299e-04
. . . . -1.34410e-11 -1.10144e-05
1.99459e-09 1.62563e+09 . . .
. . . -3.82321e-10 -3.13299e-04
row 24 . . . . .
. . . . .
. . . . . .
-8.93326e-09 0.00000e+00 . . .
. . . 9.24728e-09 -1.91250e+09 -3.14060e-10
0.00000e+00 . . . .
row 25 . . . . .
. . . . .
. . . . . .
-3.82321e-10 -3.13299e-04 . . .
. . . 3.95762e-10 1.62563e+09 -1.34410e-11
-1.10144e-05 . . . .
row 26 . . . . .
. . . . .
. . . . . .
. . -8.93326e-09 0.00000e+00 . .
. . -3.14060e-10 0.00000e+00 9.56138e-09
-1.91250e+09 -3.14060e-10 0.00000e+00 . .
row 27 . . . . .
. . . . .
. . . . . .
. . -3.82321e-10 -3.13299e-04 . .
. . -1.34410e-11 -1.10144e-05 4.09203e-10
1.62563e+09 -1.34410e-11 -1.10144e-05 . .
row 28 . . . . .
. . . . .
. . . . . .
. . . . -8.93326e-09 0.00000e+00
. . . . -3.14060e-10
0.00000e+00 9.56138e-09 -1.91250e+09 -3.14060e-10 0.00000e+00
row 29 . . . . .
. . . . .
. . . . . .
. . . . -3.82321e-10 -3.13299e-04
. . . . -1.34410e-11
-1.10144e-05 4.09203e-10 1.62563e+09 -1.34410e-11 -1.10144e-05
row 30 . . . . .
. . . . .
. . . . . .
. . . . . .
-8.93326e-09 0.00000e+00 . . .
. -3.14060e-10 0.00000e+00 9.87544e-09 -1.91250e+09
row 31 . . . . .
. . . . .
. . . . . .
. . . . . .
-3.82321e-10 -3.13299e-04 . . .
. -1.34410e-11 -1.10144e-05 1.61226e-09 1.62563e+09
residual [blocks=16,dimension=32]
row 0 -5.43e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.28e-05
-1.18e-03 -5.43e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00
row 13 0.00e+00 6.28e-05 -1.18e-03 -5.43e-03 0.00e+00 0.00e+00 0.00e+00
0.00e+00 0.00e+00 6.28e-05 -1.18e-03 -5.43e-03 0.00e+00
row 26 0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.28e-05 -1.18e-03
answer [blocks=16,dimension=32]
row 0 -5.27e+07 1.36e-13 -3.62e+07 2.55e-27 -1.97e+07 1.02e-26 -3.28e+06
1.59e-12 -5.27e+07 1.36e-13 -3.62e+07 1.11e-27 -1.97e+07
row 13 1.05e-26 -3.28e+06 1.59e-12 -5.27e+07 1.36e-13 -3.62e+07 6.20e-28
-1.97e+07 1.04e-26 -3.28e+06 1.59e-12 -5.27e+07 1.36e-13
row 26 -3.62e+07 -9.28e-29 -1.97e+07 1.10e-26 -3.28e+06 1.59e-12
_______________________________________________ Dumux mailing list [email protected] https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
