Hi

I like to use small, artificially generated data sets with
integer parameters to introduce analyses.  Often, however, I find
it difficult to avoid undesirable contingencies among the scores
(e.g., linear dependencies in within-subject designs).  Is there
an algorithmic way to generate such scores and avoid such
dependencies?  Here is a small example with 4 scores for each of
5 subjects.  The following analysis reveals the undesirable
linear dependencies.  I'm assuming the dependencies arise from
the noise vectors that I used to generate the cell scores by
adding them to the main effect of the factor and the subject
effects.  Is there a systematic way to create such noise vectors
to avoid linear dependencies?

data list free / subj vl lo hi vh
begin data
1 3 3 5 5    2 1 3 7 9     3 6 8 8 10   4 7 8 6 7   5 3 3 9 9
end data
manova vl lo hi vh /wsf = conc(4) /print = cell
  /contr(conc) = poly

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Cell Means and Standard Deviations
 Variable .. VL
                                             Mean  Std. Dev.          N   95 percent 
Conf. Interval
 For entire sample                          4.000      2.449          5       .959     
 7.041
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Variable .. LO
                                             Mean  Std. Dev.          N   95 percent 
Conf. Interval
 For entire sample                          5.000      2.739          5      1.600     
 8.400
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Variable .. HI
                                             Mean  Std. Dev.          N   95 percent 
Conf. Interval
 For entire sample                          7.000      1.581          5      5.037     
 8.963
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Variable .. VH
                                             Mean  Std. Dev.          N   95 percent 
Conf. Interval
 For entire sample                          8.000      2.000          5      5.517     
10.483
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -

Tests of Between-Subjects Effects.

 Tests of Significance for T1 using UNIQUE sums of squares
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              40.00       4     10.00
 CONSTANT                 720.00       1    720.00     72.00      .001

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Estimates for T1
 --- Individual univariate .9500 confidence intervals

 CONSTANT

  Parameter           Coeff.        Std. Err.          t-Value           Sig. t       
Lower -95%        CL- Upper

        1      12.0000000000          1.41421          8.48528           .00106        
  8.07351         15.92649

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -

* * * * * * * * * * * * * * * * * A n a l y s i s   o f   V a r i a n c e -- Design   
1 * * * * * * * * * * * * * * * * *

Tests involving 'CONC' Within-Subject Effect.


 Mauchly sphericity test, W =      .00000
 Chi-square approx. =              .      with 5 D. F.
 Significance =                      .

 Greenhouse-Geisser Epsilon =      .40650
 Huynh-Feldt Epsilon =             .49123
 Lower-bound Epsilon =             .33333

AVERAGED Tests of Significance that follow multivariate tests are equivalent to
univariate or split-plot or mixed-model approach to repeated measures.
Epsilons may be used to adjust d.f. for the AVERAGED results.

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 *                   *                                                 *
 *   W A R N I N G   * The WITHIN CELLS error matrix is SINGULAR.      *
 *                   * These variables are LINEARLY DEPENDENT          *
 *                   * on preceding ones ..                            *
 *                   *   T3                                            *
 *                   * Multivariate tests will be skipped.             *
 *                   *                                                 *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
07:51:26    The University of Winnipeg     SUN SPARC        Solaris

* * * * * * * * * * * * * * * * * A n a l y s i s   o f   V a r i a n c e -- Design   
1 * * * * * * * * * * * * * * * * *

 EFFECT .. CONC
Tests involving 'CONC' Within-Subject Effect.

 AVERAGED Tests of Significance for MEAS.1 using UNIQUE sums of squares
 Source of Variation          SS      DF        MS         F  Sig of F

 WITHIN CELLS              40.00      12      3.33
 CONC                      50.00       3     16.67      5.00      .018

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Estimates for T2
 --- Individual univariate .9500 confidence intervals

 CONC

  Parameter           Coeff.        Std. Err.          t-Value           Sig. t       
Lower -95%        CL- Upper

        1       3.1304951685           .                .                .             
   .                .

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Estimates for T3
 --- Individual univariate .9500 confidence intervals

 CONC

  Parameter           Coeff.        Std. Err.          t-Value           Sig. t       
Lower -95%        CL- Upper

        1        .0000000000           .                .                .             
   .                .

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -
 Estimates for T4
 --- Individual univariate .9500 confidence intervals

 CONC

  Parameter           Coeff.        Std. Err.          t-Value           Sig. t       
Lower -95%        CL- Upper

        1       -.4472135955           .                .                .             
   .                .

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - - - - - - - - - - - - - - - -


Best wishes
Jim

============================================================================
James M. Clark                          (204) 786-9757
Department of Psychology                (204) 774-4134 Fax
University of Winnipeg                  4L05D
Winnipeg, Manitoba  R3B 2E9             [EMAIL PROTECTED]
CANADA                                  http://www.uwinnipeg.ca/~clark
============================================================================



=================================================================
Instructions for joining and leaving this list and remarks about
the problem of INAPPROPRIATE MESSAGES are available at
                  http://jse.stat.ncsu.edu/
=================================================================

Reply via email to