Rare-earth metals in magnets for electric-car motors: what you need to know
Sep 21, 2017  Sean Szymkowski

Electric motor, shown in 'How Does an Electric Car Work?'  / Learn
Engineering video
GM electric motor production
Zytek's 70kW electric motor  / Morgan Motor Company
Tesla Model S electric motor and drive unit  / Tesla Motors forum user Tam

It's not surprising that the powertrains of electric cars differ quite a bit
from traditional internal-combustion engines.

Although they have fewer moving parts, the rare-earth magnets that help
power electric cars can be quite complex to fabricate.

So, what is there to know about rare-earth magnets—and how do automakers
choose which kind of magnet is best for an electric car's motor?

First, there are four main types of magnets: ceramic (ferrite), AlNiCo,
Samarium Cobalt (SmCo), and Neodymium (NdFeB).

The latter is the most common choice for automakers since it possesses the
best properties for electric cars, as detailed in an informative feature at
Charged EVs [

NdFeB magnets aren't the least expensive option, but they're stronger than
the other three, and least resistant to corrosion.

With strength measurements, there are two key ways to place a figure on how
powerful a magnet is: remanence and coercive force.

Remanence is measured by residual flux density (the amount of force needed
to pull it from steel or a similar-sized magnet).

Coercive force takes this magnetic effort into account but also encompasses
the effort needed to demagnetize a rare-earth magnet.

With coercive force in mind, NdFeB magnets will receive a large current to
create an intense magnetic field.

This is important because magnets must strongly resist demagnetization to
operate for long periods of time in electric cars.

Magnets work with an interaction of a fixed magnetic field supplied by a
rotor in an electric motor; if a particular magnet loses magnetization
easily, it will progressively become weaker and lose torque.

Automakers' first choice of magnet, the NdFeB, excels in this situation—but
it also has one downside: operating temperature.

Once NdFeB magnets surpass 80 degrees Celsius (176 degrees Fahrenheit),
irreversible loss of magnetization occurs.

To combat this, NdFeB magnets are often infused with heavier rare-earth
metals to increase the temperatures at which they operate.

The downside to this is a loss of strength, or specifically, remanence.

The rare-earth metals, as denoted in their name, are also in short supply
and raise the cost of the popular magnets.

There is one hold-out on NdFeB magnets, however: Tesla.

Tesla employs an induction motor, which has its own pros and cons.

For most other automakers, though, rare-earth metals in the magnets for
electric-car motors are as essential as it gets—at least today.

For a fuller explanation of the entire rare-earth metal issue, we recommend
reading the ChargedEVs feature article.
[© 2017 Green Car Reports]
Better electric motors can boost electric-car efficiency
Toyota Seeks To Ditch Rare Earth Metals from Electric Motors
What Goes Into A Tesla Model S Battery--And What It May Cost

For EVLN EV-newswire posts use:


Sent from:
Read EVAngel's EV News at
Please discuss EV drag racing at NEDRA (

Reply via email to