Ultra-capacitor hybrid radically boosts power and efficiency of lithium
20180610  Loz Blain

These carbon nanotube ultra-capacitors could have radical repercussions in
the electric vehicle world, boosting power, range and efficiency(Credit:
Nawa Technologies)
Advantages of the Nawa carbon ultra-capacitor
Nawa's ultra-capacitors charge up to 1,000 times faster than a lithium
battery, last up to a...
Nawa is at the prototype stage right now, but claims it'll have full scale
production online...
gallery - 6 images

These carbon nanotube ultra-capacitors could have radical repercussions in
the electric vehicle world, boosting power, range...

Combining the unique strengths of lithium batteries with crazy-fast
charging, carbon ultra-capacitors could save a ton of weight and add
significant range and power to electric vehicles, according to Nawa
Technologies. Based outside Marseilles, this fascinating French startup is
working on a new type of battery it believes could offer some huge
advantages in the EV space, among many others.

    Carbon nanotube construction makes for what Nawa calls an efficient,
proven and cost-effective manufacturing process, as...
    Other applications Nawa is exploring include industrial tools and
vehicles, automated inventory robots, buses, trucks and...
    Nawa is at the prototype stage right now, but claims it'll have full
scale production online...

Nawa Technologies' core product is a new type of carbon ultra-capacitor with
a set of remarkable advantages over typical lithium-ion battery cells.

Ultra-capacitor advantages

To start with, as a capacitor, its charge and discharge rates are absolutely
spectacular compared with batteries – up to 1,000 times faster. We're
talking about charging an entire car battery in a matter of seconds, maybe
three times quicker than filling a tank with fossil fuel.

And since there's no chemical reaction taking place, merely a physical
separation of protons and electrons, super-fast charging doesn't cause any
heat build-up or swelling of the battery. That gives the carbon
ultra-capacitor an exceptionally long lifetime, up to a million charge

The ultra-capacitor's monster discharge rate also offers another advantage
over lithium batteries. In high-powered EVs, the slow discharge rate of the
batteries often means you need to up battery capacity in order to add
performance. The Tesla Model S, for example, wouldn't be able to activate
its Ludicrous speed mode with a smaller battery pack, because the slow
discharge rates of the batteries would cause a power bottleneck. That's
absolutely not a problem with an ultra-capacitor; these things discharge
fast enough to output enormous power with a very small battery.

It's also very cheap and simple to manufacture, using a process that Nawa
Founder and COO Pascal Boulanger describes to us over the phone as "the same
process used to create photovoltaic panels. It's industry proven, highly
efficient and cost effective."

But these remarkable advantages are not the key driver for Boulanger. He
believes the carbon ultra-capacitor's environmental benefits are its biggest
calling card.

"For me, the dream comes from the fact that we're not using lithium, cobalt,
rare earth metals," says Boulanger. "These materials are polluting, and very
complicated to extract from the Earth. We're moving from a society where we
extract oil to put in the car, to the same theme, but extracting metals and
minerals to put in electric cars. It's not good, because we're destroying
our planet.

"Nawa's ultra-capacitors only use carbon and aluminum. Our carbon comes from
natural, sustainable sources. We don't need to mine. When I created Nawa,
that was what I wanted to promote: a real, sustainable way. That's the
dream. Building safer and cleaner batteries."

Could you run a vehicle completely on Nawa's carbon technology? Yes, says
Nawa CEO Ulrik Grape.

"People looking for small cars that are used mainly for small drives, like
around city centers, our technology would be perfect," Grape says. "You can
do 50 to 100 kilometers (31 to 62 mi) on our technology alone, and you can
recharge the car in less than 10 or 20 seconds. It's perfect for a fleet of
electric cars for sharing."

But this ultra-capacitor technology does have drawbacks.

Drawbacks and the hybrid solution

For starters, while power density (the amount of power output per unit of
weight) is off the charts, energy density doesn't compete with lithium. An
ultra-capacitor will only hold about 25 percent of the energy per unit of
weight that a lithium battery can manage, so a car battery with the same
sized ultra-capacitor would have only a quarter the range.

Secondly, capacitors suck at long-term energy storage. Leave your car
charged up in your garage, and you could expect to leak around 10-20 percent
of your energy out each day.

The Nawa team believes that the full potential of the ultra-capacitor, at
least in the EV space, becomes unlocked when it's combined with a lithium

A hybrid lithium/carbon battery system could offer the best of both worlds –
long-range continuous driving and long-term power storage thanks to the
lithium unit, plus ultra-fast partial charging and extreme power output
thanks to the ultra-capacitor.

This kind of hybrid system has another hidden advantage: regenerative
braking would become about 450 percent better at recouping energy. Current
re-gen systems are forced to throw away the vast majority of energy
generated back through the wheels under braking simply because lithium
charges so slowly that there's nowhere to put it all.

"Most of the energy in regenerative braking is lost as heat, maybe 80
percent," says Grape. "Perhaps 20 percent is recouped. The electric motors
are very efficient at generating that power, but the battery just can't
accept the charge rate. If you combine our technology with the lithium
battery, we can accept up to 90 percent of that energy."

In a regular driving situation, that could handily extend your battery
range. In an electric race car, this kind of system would be even more
effective, storing almost all of your braking energy coming into a corner,
and then pumping it back out at a massive rate for huge acceleration out of
the turn.

"For example, let's take Formula E racing," says Grape. "If you look at the
batteries they have on those cars, we've done a simulation using data from a
co-operation partner of ours, and we've analyzed it. When you combine our
technology with the lithium battery, we could reduce the size and weight of
the battery pack from 300 kg (661 lb) to about 200 kg (441 lb) – and you'd
have a longer driving distance as well, because we're much more efficient."

We're fairly sure we don't need to point out what an enormous advantage a
100-kg (220-lb) weight saving would be in a racing application; it would
significantly extend your range and acceleration figures, while adding the
extra power of that enormous discharge rate.

The advantages could also carry over into electric trucking applications.

"There's so much energy there to be harvested when a truck is going downhill
or braking, and the energy recovery systems on those vehicles just can't
handle all the energy that's coming back," says Grape.
Other applications Nawa is exploring include industrial tools and vehicles,
automated inventory robots, buses, trucks and...
Other applications

There are plenty of other places a carbon ultra-capacitor could come in
handy. Nawa is working with industrial power tool manufacturers who see the
ultra-fast-charging capabilities and long cycle lives as opportunities to
build longer-life tools for production line use that would charge in seconds
between jobs. Then there's factory and warehouse robots.

"We have a project where we're working on AGV solutions – Automatic Guided
Vehicles like you might see in warehouses," says Grape. "These small, robot
things that are running about picking up packages and moving them around.
You can think of companies like Amazon, large warehouses. We're working on a
project with a European AGV manufacturer to demonstrate this in that kind of
an application."

The carbon ultra-capacitors might find uses in an Internet of Things type
application as well.

"In the IoT domain, people are talking about battery-free sensors," says
Boulanger. "You have an energy source inside the sensors, and the sensors
need to take some kind of measurement, then transmit the information. You
need a very short buffer. Our technology is absolutely fantastic for that."

And back in the automotive world, there are no limits on how you might
charge these things, opening up some interesting ideas for inductive
charging. Imagine simply driving your car over a surface at a charge
station, paying for a top-up and driving away 10-20 seconds later. The range
of an electric car would become almost irrelevant if you could charge it so

"If you want to take that a little further, you could imagine having
ultra-capacitors buried under the road surface," says Grape. "And when a bus
passes over, it could charge very rapidly. And the ultra-capacitor itself
could charge more slowly off the grid while the next bus is coming."

Another key benefit: structural batteries

One final thing we haven't yet touched on is the outstanding mechanical
properties of the carbon ultra-capacitor. It's lightweight and super-strong,
opening up the opportunity to build ultra-capacitors into the very structure
of an item in ways lithium simply can't be used.

"We had a project with Airbus where we tested our technology to see how it
would act from a mechanical point of view and for storage," says Boulanger.
"We can integrate a battery into any carbon fiber structure."

"The mechanical property of our electrode is very, very strong, adds Grape.
"It can be used to enforce the mechanical structure of a composite. You can
integrate the battery into the shell of a car. The chassis, the doors, the
roof, wherever you like."

Indeed, the idea of a vehicle with no discrete battery unit to speak of is
very much possible.

Nawa is currently testing and working with prototype units, but the team
says by the second half of 2019, the company will have a full-scale
production line in operation not far from Marseilles. The potential of these
super-fast carbon ultra-capacitors sounds terrific. We look forward to
seeing Nawa's technology tested in earnest.
Source: Nawa Technologies [
] ... [© Gizmag]
AeroVironment Exits the Electric Vehicle Charging Market
It was a long time coming, but in the end AeroVironment made the right
decision: It's bitten the bullet, exited the automotive business, and
elected to become a pure-play maker of unmanned aerial vehicles ...
evdl archive search  AeroVironment highway

For EVLN EV-newswire posts use:


Sent from:
Please discuss EV drag racing at NEDRA (

Reply via email to