On 9 Nov 2003 at 16:22, Brent Meeker wrote:
> In the intial relativistic models of the origin of the universe, 
the
> matter began with very high energy so it expanded against the pull 
of
> gravity.  Taking the zero of energy to be when the matter is
> infinitely dispersed, as is usual, the net energy of any portion of
> the universe is zero.  Taking this back in time, the gravitational
> potential turns into kinetic energy and hence a hot big bang.
> 
> However, this model had some problems explaining the great 
homogeneity
> of the universe.  Hence the inflationary model was invented by Alan
> Guth (c.f. his book "Inflation").  These models do assume another
> field as the source for inflation which may be independent of the
> cosmological 'constant'.  This is usually referred to as the 
'inflaton
> field' and there have been theories that tried to identify it with 
the
> Higgs field.  In the models the inflaton field changes dynamically,
> i.e. it and the scale of the universe are coupled in differential
> equations.

I'm looking forward to the upcoming high energy experiments that just 
might settle the issue of a gravity force carrier. My thought is that 
it will never be found, that gravity ultimately is but another 
expression of inflation; a kind of tension between our universe and 
the meta universe that is trying to reclaim its virtual particles 
that are our universe. I'm at loss to explain the physical properties 
of that "tension" because I don't think there are any that can be 
expressed in matter/energy terms (because they are space/time terms, 
and I don't think the matter/energy and space/time can ever be 
unified even though they do have effect upon each other). And it is 
difficult to imagine a force carrier that could climb out of a black 
hole and be expressed as "gravity" with particles in our universe.

...

> > >How is this argument consistent with the very accurate 
prediction
> of
> > >decay rates based on quantum analysis of potential barriers 
which
> do
> > >not consider inflation or any other aspect of gravity?
> >
> > You refer to quantum mechanical tunneling, a probabilistic event?
> > We're getting Spooky again! It's a form of expression related to
> > Planck's constant. There is no "in between" state in QM, a 
particle
> > is either here or it's there when it comes to the smallest packet 
of
> > energy that can be expressed. When decay occurs due to a particle
> > being "there" instead of being "here" (i.e. bound as it was to a
> > nucleus) we are simply seeing QM probability on display. This is 
not
> > the same mechanism of decay being caused by inflation.
> 
> But you postulated,"... one reason behind a decay of  any particle
> (radioactive or not) is because of inflation..."  I'm just pointing
> out that quantum tunneling already explains and accurately predicts
> the decay of radioactive atoms and unstable particles without
> considering inflation.  So this seems to leave no role for 
inflation
> as "one reason" for decay.  Maybe you are referring to some kind of
> decay that has not been observed?  like decay of the proton?

I postulated a different (non energy exchange) mechanism for decay, 
not the only mechanism for decay (another being interaction with 
another energy sources). I mean there's a difference to having pumped 
something up to an unstable state and QM then doing its decay thing 
versus something that is in a ground state which then suddenly decays 
due to sudden bond breakage caused by space volume changes that 
result from inflation. The two decay mechanisms are not related 
whatsoever, although they both result in a decay. Unless pumped up to 
a higher energy state by interaction with energy, particles seek to 
be at ground state. Once all the "foreign" energy has been shed from 
a particle via QM, it undergoes no more decay and is 100% stable. 
Well, maybe not, but I think that it is so. Stable until the volume 
of local inflation relative to that particle reaches a specific 
value.

No, I don't think we're likely to observe much in the way of locally 
detectable decay due to inflation right *now*, because the rate of 
and the volume of inflation locally has not exceeded the speed of 
light at the atomic level - yet. Only where space/time inflation 
between 2 points surpasses the speed of light to the point where a 
particle within that volume can not interact with other particles can 
one expect that *total* decay occurs. This is likely to occur in 
voids and black holes sooner than elsewhere in the universe. 
Unfortunately, when it happens it can not be observed. Well, maybe 
there might be some really very high energy decay observed due to 
some QM effect when the expansion rate relative to a particle is at 
an infistimately small fraction below the speed of light, and we 
might in result detect flashes of super high energy seemingly coming 
randomly and from anywhere. But we detect nothing from within areas 
where inflation is expanding faster than light.

Meanwhile, as volume of inflation increases and before it reaches 
light speed there will still be observable effects of decay. Total 
decay doesn't happen all at once, the process comes in packets of 
energy decay over time as the space/time inflation volume increase 
forces nuclear components away from each other. I suppose that total 
decay will follow partial decay in a rather short time period.

Another good way to observe the effects of such a decay might be at 
the event horizon of a black hole (just barely before entering it). 
I've argued in this topic already that a black hole is, relative to 
everything in our universe, just a localized example of an inflation 
rate that has exceeded the speed of light. And that what we term 
"gravity" is really what dark matter is, a tension being expressed 
between our universe and the meta universe - it is everywhere and it 
is not composed of matter/energy, it is composed of space/time. 
Overall, dark matter is very highly uniform in its distribution 
throughout the universe. But there are exceptions, the most obvious 
being where there are black holes and anywhere else there is 
matter/energy, so the concentrations vary at local scales. Higher 
local concentrations of matter/energy simply mean there is higher 
local "tension" involved.

Ron McFarland

Reply via email to