Bruno Marchal skrev:
Le 20-nov.-07, à 23:39, Barry Brent wrote :

You're saying that, just because you can *write down* the missing
sequence (at the beginning, middle or anywhere else in the list), it
follows that there *is* no missing sequence.  Looks pretty wrong to me.

  Cantor's proof disqualifies any candidate enumeration.  You respond
by saying, "well, here's another candidate!"  But Cantor's procedure
disqualified *any*, repeat *any* candidate enumeration.

Barry Brent

Torgny, I do agree with Barry. Any bijection leads to a contradiction, 
even in some effective way, and that is enough (for a classical 

What do you think of this "proof"?:

Let us have the bijection:

0 -------- {0,0,0,0,0,0,0,...}
1 -------- {1,0,0,0,0,0,0,...}
2 -------- {0,1,0,0,0,0,0,...}
3 -------- {1,1,0,0,0,0,0,...}
4 -------- {0,0,1,0,0,0,0,...}
5 -------- {1,0,1,0,0,0,0,...}
6 -------- {0,1,1,0,0,0,0,...}
7 -------- {1,1,1,0,0,0,0,...}
8 -------- {0,0,0,1,0,0,0,...}
omega --- {1,1,1,1,1,1,1,...}

What do we get if we apply Cantor's Diagonal to this?


You received this message because you are subscribed to the Google Groups "Everything List" group.
To post to this group, send email to [EMAIL PROTECTED]
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at

Reply via email to