I forgot to mention that in the directory where I run ipython, there is a ffc_form_......h file created. Here it is:

// This code conforms with the UFC specification version 2.3.0
// and was automatically generated by FFC version 1.3.0.
//
// This code was generated with the following parameters:
//
//   cache_dir:                      ''
//   convert_exceptions_to_warnings: False
//   cpp_optimize:                   True
//   cpp_optimize_flags:             '-O2'
//   epsilon:                        1e-14
//   error_control:                  False
//   form_postfix:                   False
//   format:                         'ufc'
//   log_level:                      25
//   log_prefix:                     ''
//   name:                           'ffc'
//   no-evaluate_basis_derivatives:  True
//   optimize:                       False
//   output_dir:                     '.'
//   precision:                      15
//   quadrature_degree:              -1
//   quadrature_rule:                'auto'
//   representation:                 'auto'
//   restrict_keyword:               ''
//   split:                          False

#ifndef __FFC_FORM_FCA4B6FFB2FC6E2E2DE21F0BD1C9DE03EA2F593C_H
#define __FFC_FORM_FCA4B6FFB2FC6E2E2DE21F0BD1C9DE03EA2F593C_H

#include <cmath>
#include <stdexcept>
#include <fstream>
#include <ufc.h>

/// This class defines the interface for a finite element.

class ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_finite_element_0: public ufc::finite_element
{
public:

  /// Constructor
ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_finite_element_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
virtual ~ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_finite_element_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
return "FiniteElement('Lagrange', Domain(Cell('triangle', 2), 'triangle_multiverse', 2, 2), 1, None)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the topological dimension of the cell shape
  virtual std::size_t topological_dimension() const
  {
    return 2;
  }

  /// Return the geometric dimension of the cell shape
  virtual std::size_t geometric_dimension() const
  {
    return 2;
  }

  /// Return the dimension of the finite element function space
  virtual std::size_t space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual std::size_t value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual std::size_t value_dimension(std::size_t i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point x in cell
  virtual void evaluate_basis(std::size_t i,
                              double* values,
                              const double* x,
                              const double* vertex_coordinates,
                              int cell_orientation) const
  {
    // Compute Jacobian
    double J[4];
    compute_jacobian_triangle_2d(J, vertex_coordinates);

    // Compute Jacobian inverse and determinant
    double K[4];
    double detJ;
    compute_jacobian_inverse_triangle_2d(K, detJ, J);


    // Compute constants
    const double C0 = vertex_coordinates[2] + vertex_coordinates[4];
    const double C1 = vertex_coordinates[3] + vertex_coordinates[5];

    // Get coordinates and map to the reference (FIAT) element
    double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ;
    double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ;

    // Reset values
    *values = 0.0;
    switch (i)
    {
    case 0:
      {

      // Array of basisvalues
      double basisvalues[3] = {0.0, 0.0, 0.0};

      // Declare helper variables
      double tmp0 = (1.0 + Y + 2.0*X)/2.0;

      // Compute basisvalues
      basisvalues[0] = 1.0;
      basisvalues[1] = tmp0;
      basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y);
      basisvalues[0] *= std::sqrt(0.5);
      basisvalues[2] *= std::sqrt(1.0);
      basisvalues[1] *= std::sqrt(3.0);

      // Table(s) of coefficients
      static const double coefficients0[3] = \
      {0.471404520791032, -0.288675134594813, -0.166666666666667};

      // Compute value(s)
      for (unsigned int r = 0; r < 3; r++)
      {
        *values += coefficients0[r]*basisvalues[r];
      }// end loop over 'r'
        break;
      }
    case 1:
      {

      // Array of basisvalues
      double basisvalues[3] = {0.0, 0.0, 0.0};

      // Declare helper variables
      double tmp0 = (1.0 + Y + 2.0*X)/2.0;

      // Compute basisvalues
      basisvalues[0] = 1.0;
      basisvalues[1] = tmp0;
      basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y);
      basisvalues[0] *= std::sqrt(0.5);
      basisvalues[2] *= std::sqrt(1.0);
      basisvalues[1] *= std::sqrt(3.0);

      // Table(s) of coefficients
      static const double coefficients0[3] = \
      {0.471404520791032, 0.288675134594813, -0.166666666666667};

      // Compute value(s)
      for (unsigned int r = 0; r < 3; r++)
      {
        *values += coefficients0[r]*basisvalues[r];
      }// end loop over 'r'
        break;
      }
    case 2:
      {

      // Array of basisvalues
      double basisvalues[3] = {0.0, 0.0, 0.0};

      // Declare helper variables
      double tmp0 = (1.0 + Y + 2.0*X)/2.0;

      // Compute basisvalues
      basisvalues[0] = 1.0;
      basisvalues[1] = tmp0;
      basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y);
      basisvalues[0] *= std::sqrt(0.5);
      basisvalues[2] *= std::sqrt(1.0);
      basisvalues[1] *= std::sqrt(3.0);

      // Table(s) of coefficients
      static const double coefficients0[3] = \
      {0.471404520791032, 0.0, 0.333333333333333};

      // Compute value(s)
      for (unsigned int r = 0; r < 3; r++)
      {
        *values += coefficients0[r]*basisvalues[r];
      }// end loop over 'r'
        break;
      }
    }

  }

  /// Evaluate all basis functions at given point x in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* x,
                                  const double* vertex_coordinates,
                                  int cell_orientation) const
  {
    // Helper variable to hold values of a single dof.
    double dof_values = 0.0;

    // Loop dofs and call evaluate_basis
    for (unsigned int r = 0; r < 3; r++)
    {
evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation);
      values[r] = dof_values;
    }// end loop over 'r'
  }

/// Evaluate order n derivatives of basis function i at given point x in cell
  virtual void evaluate_basis_derivatives(std::size_t i,
                                          std::size_t n,
                                          double* values,
                                          const double* x,
                                          const double* vertex_coordinates,
                                          int cell_orientation) const
  {
throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)");
  }

/// Evaluate order n derivatives of all basis functions at given point x in cell
  virtual void evaluate_basis_derivatives_all(std::size_t n,
                                              double* values,
                                              const double* x,
const double* vertex_coordinates,
                                              int cell_orientation) const
  {
    // Call evaluate_basis_all if order of derivatives is equal to zero.
    if (n == 0)
    {
      evaluate_basis_all(values, x, vertex_coordinates, cell_orientation);
      return ;
    }

    // Compute number of derivatives.
    unsigned int num_derivatives = 1;
    for (unsigned int r = 0; r < n; r++)
    {
      num_derivatives *= 2;
    }// end loop over 'r'

    // Set values equal to zero.
    for (unsigned int r = 0; r < 3; r++)
    {
      for (unsigned int s = 0; s < num_derivatives; s++)
      {
        values[r*num_derivatives + s] = 0.0;
      }// end loop over 's'
    }// end loop over 'r'

// If order of derivatives is greater than the maximum polynomial degree, return zeros.
    if (n > 1)
    {
      return ;
    }

    // Helper variable to hold values of a single dof.
    double dof_values[2];
    for (unsigned int r = 0; r < 2; r++)
    {
      dof_values[r] = 0.0;
    }// end loop over 'r'

    // Loop dofs and call evaluate_basis_derivatives.
    for (unsigned int r = 0; r < 3; r++)
    {
evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation);
      for (unsigned int s = 0; s < num_derivatives; s++)
      {
        values[r*num_derivatives + s] = dof_values[s];
      }// end loop over 's'
    }// end loop over 'r'
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(std::size_t i,
                              const ufc::function& f,
                              const double* vertex_coordinates,
                              int cell_orientation,
                              const ufc::cell& c) const
  {
    // Declare variables for result of evaluation
    double vals[1];

    // Declare variable for physical coordinates
    double y[2];
    switch (i)
    {
    case 0:
      {
        y[0] = vertex_coordinates[0];
      y[1] = vertex_coordinates[1];
      f.evaluate(vals, y, c);
      return vals[0];
        break;
      }
    case 1:
      {
        y[0] = vertex_coordinates[2];
      y[1] = vertex_coordinates[3];
      f.evaluate(vals, y, c);
      return vals[0];
        break;
      }
    case 2:
      {
        y[0] = vertex_coordinates[4];
      y[1] = vertex_coordinates[5];
      f.evaluate(vals, y, c);
      return vals[0];
        break;
      }
    }

    return 0.0;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const double* vertex_coordinates,
                             int cell_orientation,
                             const ufc::cell& c) const
  {
    // Declare variables for result of evaluation
    double vals[1];

    // Declare variable for physical coordinates
    double y[2];
    y[0] = vertex_coordinates[0];
    y[1] = vertex_coordinates[1];
    f.evaluate(vals, y, c);
    values[0] = vals[0];
    y[0] = vertex_coordinates[2];
    y[1] = vertex_coordinates[3];
    f.evaluate(vals, y, c);
    values[1] = vals[0];
    y[0] = vertex_coordinates[4];
    y[1] = vertex_coordinates[5];
    f.evaluate(vals, y, c);
    values[2] = vals[0];
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const double* vertex_coordinates,
                                         int cell_orientation,
                                         const ufc::cell& c) const
  {
    // Evaluate function and change variables
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Map coordinate xhat from reference cell to coordinate x in cell
  virtual void map_from_reference_cell(double* x,
                                       const double* xhat,
                                       const ufc::cell& c) const
  {
throw std::runtime_error("map_from_reference_cell not yet implemented.");
  }

  /// Map from coordinate x in cell to coordinate xhat in reference cell
  virtual void map_to_reference_cell(double* xhat,
                                     const double* x,
                                     const ufc::cell& c) const
  {
    throw std::runtime_error("map_to_reference_cell not yet implemented.");
  }

  /// Return the number of sub elements (for a mixed element)
  virtual std::size_t num_sub_elements() const
  {
    return 0;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(std::size_t i) const
  {
    return 0;
  }

  /// Create a new class instance
  virtual ufc::finite_element* create() const
  {
return new ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_finite_element_0();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).

class ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_dofmap_0: public ufc::dofmap
{
public:

  /// Constructor
ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_dofmap_0() : ufc::dofmap()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_dofmap_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dofmap
  virtual const char* signature() const
  {
return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2), 'triangle_multiverse', 2, 2), 1, None)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(std::size_t d) const
  {
    switch (d)
    {
    case 0:
      {
        return true;
        break;
      }
    case 1:
      {
        return false;
        break;
      }
    case 2:
      {
        return false;
        break;
      }
    }

    return false;
  }

  /// Return the topological dimension of the associated cell shape
  virtual std::size_t topological_dimension() const
  {
    return 2;
  }

  /// Return the geometric dimension of the associated cell shape
  virtual std::size_t geometric_dimension() const
  {
    return 2;
  }

  /// Return the dimension of the global finite element function space
  virtual std::size_t global_dimension(const std::vector<std::size_t>&
                                       num_global_entities) const
  {
    return num_global_entities[0];
  }

/// Return the dimension of the local finite element function space for a cell
  virtual std::size_t local_dimension() const
  {
    return 3;
  }

  /// Return the number of dofs on each cell facet
  virtual std::size_t num_facet_dofs() const
  {
    return 2;
  }

/// Return the number of dofs associated with each cell entity of dimension d
  virtual std::size_t num_entity_dofs(std::size_t d) const
  {
    switch (d)
    {
    case 0:
      {
        return 1;
        break;
      }
    case 1:
      {
        return 0;
        break;
      }
    case 2:
      {
        return 0;
        break;
      }
    }

    return 0;
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(std::size_t* dofs,
const std::vector<std::size_t>& num_global_entities,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(std::size_t* dofs,
                                   std::size_t facet) const
  {
    switch (facet)
    {
    case 0:
      {
        dofs[0] = 1;
      dofs[1] = 2;
        break;
      }
    case 1:
      {
        dofs[0] = 0;
      dofs[1] = 2;
        break;
      }
    case 2:
      {
        dofs[0] = 0;
      dofs[1] = 1;
        break;
      }
    }

  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(std::size_t* dofs,
                                    std::size_t d, std::size_t i) const
  {
    if (d > 2)
    {
    throw std::runtime_error("d is larger than dimension (2)");
    }

    switch (d)
    {
    case 0:
      {
        if (i > 2)
      {
      throw std::runtime_error("i is larger than number of entities (2)");
      }

      switch (i)
      {
      case 0:
        {
          dofs[0] = 0;
          break;
        }
      case 1:
        {
          dofs[0] = 1;
          break;
        }
      case 2:
        {
          dofs[0] = 2;
          break;
        }
      }

        break;
      }
    case 1:
      {

        break;
      }
    case 2:
      {

        break;
      }
    }

  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** dof_coordinates,
                                    const double* vertex_coordinates) const
  {
    dof_coordinates[0][0] = vertex_coordinates[0];
    dof_coordinates[0][1] = vertex_coordinates[1];
    dof_coordinates[1][0] = vertex_coordinates[2];
    dof_coordinates[1][1] = vertex_coordinates[3];
    dof_coordinates[2][0] = vertex_coordinates[4];
    dof_coordinates[2][1] = vertex_coordinates[5];
  }

  /// Return the number of sub dofmaps (for a mixed element)
  virtual std::size_t num_sub_dofmaps() const
  {
    return 0;
  }

  /// Create a new dofmap for sub dofmap i (for a mixed element)
  virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const
  {
    return 0;
  }

  /// Create a new class instance
  virtual ufc::dofmap* create() const
  {
return new ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_dofmap_0();
  }

};

/// This class defines the interface for the tabulation of the cell
/// tensor corresponding to the local contribution to a form from
/// the integral over a cell.

class ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_cell_integral_0_otherwise: public ufc::cell_integral
{
public:

  /// Constructor
ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_cell_integral_0_otherwise() : ufc::cell_integral()
  {
    // Do nothing
  }

  /// Destructor
virtual ~ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_cell_integral_0_otherwise()
  {
    // Do nothing
  }

  /// Tabulate the tensor for the contribution from a local cell
  virtual void tabulate_tensor(double*  A,
                               const double * const *  w,
                               const double*  vertex_coordinates,
                               int cell_orientation) const
  {
    // Number of operations (multiply-add pairs) for Jacobian data:      3
    // Number of operations (multiply-add pairs) for geometry tensor:    0
    // Number of operations (multiply-add pairs) for tensor contraction: 1
    // Total number of operations (multiply-add pairs):                  4

    // Compute Jacobian
    double J[4];
    compute_jacobian_triangle_2d(J, vertex_coordinates);

    // Compute Jacobian inverse and determinant
    double K[4];
    double detJ;
    compute_jacobian_inverse_triangle_2d(K, detJ, J);

    // Set scale factor
    const double det = std::abs(detJ);

    // Compute geometry tensor
    const double G0_ = det;

    // Compute element tensor
    A[0] = 0.166666666666667*G0_;
    A[1] = 0.166666666666667*G0_;
    A[2] = 0.166666666666667*G0_;
  }

};

/// This class defines the interface for the assembly of the global
/// tensor corresponding to a form with r + n arguments, that is, a
/// mapping
///
///     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R
///
/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r
/// global tensor A is defined by
///
///     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),
///
/// where each argument Vj represents the application to the
/// sequence of basis functions of Vj and w1, w2, ..., wn are given
/// fixed functions (coefficients).

class ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_form_0: public ufc::form
{
public:

  /// Constructor
  ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_form_0() : ufc::form()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_form_0()
  {
    // Do nothing
  }

  /// Return a string identifying the form
  virtual const char* signature() const
  {
return "a036a0bc5bf460925612e3b0dfa5f15a45df1c27c936b9857779882404f39c7e3dd1b02269e4ee8afb802266c1617a729ffb57d491f5491ee8b43137642b15ea";
  }

  /// Return the rank of the global tensor (r)
  virtual std::size_t rank() const
  {
    return 1;
  }

  /// Return the number of coefficients (n)
  virtual std::size_t num_coefficients() const
  {
    return 0;
  }

  /// Return the number of cell domains
  virtual std::size_t num_cell_domains() const
  {
    return 0;
  }

  /// Return the number of exterior facet domains
  virtual std::size_t num_exterior_facet_domains() const
  {
    return 0;
  }

  /// Return the number of interior facet domains
  virtual std::size_t num_interior_facet_domains() const
  {
    return 0;
  }

  /// Return the number of point domains
  virtual std::size_t num_point_domains() const
  {
    return 0;
  }

  /// Return whether the form has any cell integrals
  virtual bool has_cell_integrals() const
  {
    return true;
  }

  /// Return whether the form has any exterior facet integrals
  virtual bool has_exterior_facet_integrals() const
  {
    return false;
  }

  /// Return whether the form has any interior facet integrals
  virtual bool has_interior_facet_integrals() const
  {
    return false;
  }

  /// Return whether the form has any point integrals
  virtual bool has_point_integrals() const
  {
    return false;
  }

  /// Create a new finite element for argument function i
  virtual ufc::finite_element* create_finite_element(std::size_t i) const
  {
    switch (i)
    {
    case 0:
      {
return new ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_finite_element_0();
        break;
      }
    }

    return 0;
  }

  /// Create a new dofmap for argument function i
  virtual ufc::dofmap* create_dofmap(std::size_t i) const
  {
    switch (i)
    {
    case 0:
      {
return new ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_dofmap_0();
        break;
      }
    }

    return 0;
  }

  /// Create a new cell integral on sub domain i
  virtual ufc::cell_integral* create_cell_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new exterior facet integral on sub domain i
virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new interior facet integral on sub domain i
virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new point integral on sub domain i
  virtual ufc::point_integral* create_point_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new cell integral on everywhere else
  virtual ufc::cell_integral* create_default_cell_integral() const
  {
return new ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c_cell_integral_0_otherwise();
  }

  /// Create a new exterior facet integral on everywhere else
virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const
  {
    return 0;
  }

  /// Create a new interior facet integral on everywhere else
virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const
  {
    return 0;
  }

  /// Create a new point integral on everywhere else
  virtual ufc::point_integral* create_default_point_integral() const
  {
    return 0;
  }

};

#endif

On 10/23/2014 05:42 AM, Jan Blechta wrote:
On Thu, 23 Oct 2014 01:41:30 -0500
Ben Crestel <[email protected]> wrote:

I installed Fenics on Ubuntu 14.04 via the command line (sudo apt-get
install fenics) w/o adding a specific ppa before (this gives me
dolfin version 1.3.0).

Next I open ipython then type:

from dolfin import *
mesh = UnitSquareMesh(10,10)
V = FunctionSpace(mesh, 'Lagrange', 1)

And I get the following error message:
Calling FFC just-in-time (JIT) compiler, this may take some time.
In instant.recompile: The module did not compile with command 'make
VERBOSE=1', see
'/home/ben/.instant/error/ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c/compile.log'

Everything was working fine a couple of weeks ago.  I then tried to
compile Fenics from source. It didn't work completely and I decided
to revert to the initial working state I had. But unsuccessfully....
If you were installing from source
to /usr[/local]/{lib,bin,include,share} (or any other directories in
PATH, LD_LIBRARY_PATH, PYTHONPATH) you may need to clean it up to
prevent clashes with packaged version.

Then follow the instructions here
http://fenicsproject.org/download/ubuntu_details.html#ubuntu-ppa

It's getting really frustrating. I hope someone has an idea on how to
fix that.

Thanks,

Ben



P.S: The file mentioned in the error message is rather long. But here
are the first few lines and the last few lines:
We need first ten twenty lines from first line where 'error' occurs.

Jan

-- The C compiler identification is GNU 4.8.2
-- The CXX compiler identification is GNU 4.8.2
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Found SWIG: /usr/bin/swig2.0 (found version "2.0.11")
-- Configuring done
-- Generating done
CMake Warning:
    Manually-specified variables were not used by the project:

      DEBUG

.......

/usr/local/include/ufc.h:435:25: note:  virtual std::size_t
ufc::form::original_coefficient_position(std::size_t) const
       virtual std::size_t original_coefficient_position(std::size_t
i) const = 0;
                           ^
/usr/local/include/ufc.h:456:25: note:  virtual std::size_t
ufc::form::num_custom_domains() const
       virtual std::size_t num_custom_domains() const = 0;
                           ^
/usr/local/include/ufc.h:471:18: note:  virtual bool
ufc::form::has_custom_integrals() const
       virtual bool has_custom_integrals() const = 0;
                    ^
/usr/local/include/ufc.h:494:30: note:  virtual ufc::custom_integral*
ufc::form::create_custom_integral(std::size_t) const
       virtual custom_integral* create_custom_integral(std::size_t i)
const = 0;
                                ^
/usr/local/include/ufc.h:511:30: note:  virtual ufc::custom_integral*
ufc::form::create_default_custom_integral() const
       virtual custom_integral* create_default_custom_integral() const
= 0; ^
make[2]: ***
[CMakeFiles/_ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c.dir/ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593cPYTHON_wrap.cxx.o]
Error 1
make[2]: Leaving directory
`/tmp/tmpgD2U432014-10-23-01-28_instant_42ab166e7e6f10680af12bbaf5e4acce93ae0c93/ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c'
make[1]: ***
[CMakeFiles/_ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c.dir/all]
Error 2
make[1]: Leaving directory
`/tmp/tmpgD2U432014-10-23-01-28_instant_42ab166e7e6f10680af12bbaf5e4acce93ae0c93/ffc_form_fca4b6ffb2fc6e2e2de21f0bd1c9de03ea2f593c'
make: *** [all] Error 2

_______________________________________________
fenics-support mailing list
[email protected]
http://fenicsproject.org/mailman/listinfo/fenics-support

_______________________________________________
fenics-support mailing list
[email protected]
http://fenicsproject.org/mailman/listinfo/fenics-support

Reply via email to