Dear GAP Forum, On 1 Jun 2011, at 06:59, mazaher rahimi wrote:
> How we can introduce the following group : > $G=D\times H$ where $D$ is dihedral group of order 42 and $H$ is a > semidirect product of vector space $V$ of dimension 3 over $GF(2)$ by > a subgroup of order 21 from $GL(3,2)$ acting on $V$ naturally.Thanks > There are many ways of obtaining groups isomorphic to your G. A very straightforward way, that depends on no special knowledge about the groups concerned is shown below: gap> d := DihedralGroup(42); <pc group of size 42 with 3 generators> gap> v := ElementaryAbelianGroup(8); <pc group of size 8 with 3 generators> gap> a := AutomorphismGroup(v); <group of size 168 with 2 generators> gap> ccs := ConjugacyClassesSubgroups(a); [ Group( IdentityMapping( Group( [ f1, f2, f3 ] ) ) )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f2, f1*f2*f3, f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f3, f2 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f2, f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f3, f2 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f2, f1*f2*f3, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f2, f2*f3, f1*f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f3, f2 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f1*f2, f1*f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f3, f2 ], Pcgs([ f1, f2, f3 ]) -> [ f2, f1*f2, f1*f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f3, f2*f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f2, f2*f3, f1*f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f1*f3, f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f3, f2 ], Pcgs([ f1, f2, f3 ]) -> [ f2, f1*f2, f1*f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f1*f2, f1*f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f3, f2*f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f2*f3, f3 ] ] )^G, Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f2, f3 ], Pcgs([ f1, f2, f3 ]) -> [ f3, f1, f2 ] ] )^G ] gap> Filtered(ccs, c -> Size(Representative(c)) = 21); [ Group( [ Pcgs([ f1, f2, f3 ]) -> [ f2, f2*f3, f1*f3 ], Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f1*f3, f3 ] ] )^G ] gap> k := Representative(last[1]); <group of size 21 with 2 generators> gap> h := SemidirectProduct(k,v); <pc group with 5 generators> gap> g := DirectProduct(d,h); <pc group of size 7056 with 8 generators> gap> Steve Linton _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum