Dear forum, It seems that in the first case, the function constructs a permutation group because S was a permutation group. Hence it is possible to compare both groups as, for example, subgroups of a permutation group. In the second case, it seems that G is constructed as a new pc group, and since it is constructed as a new group, it is not comparable with the old one.
In the second case you can use the group homomorphism Embedding(g,1) to identify C with G (or, in general, with the corresponding subgroup of G). Best wishes, -- Ramon <reste...@mat.upv.es> Clau pública PGP/Llave pública PGP/Clef publique PGP/PGP public key: http://www.rediris.es/cert/servicios/keyserver/ http://personales.upv.es/~resteban/resteban.asc Telèfon/teléfono/téléphone/phone: (+34)963877007 ext. 76676 * Luyện Lê Văn <lvlu...@gmail.com> [111214 19:47]: > Dear forum, > > When I ran the below code lines: > gap >S:=SymmetricGroup(3);; > gap >G:=DirectProduct(S);; > gap >G=S; > true > > gap >C:=CyclicGroup(3);; > gap >G:=DirectProduct(C);; > gap >G=C; > false > > I realized that there was a difference when I used SymmetricGroup and > CyclicGroup. Could you explain it? > > Thanks, > > Luyen. > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum