On Wed, 14 Dec 2011, Luyện Lê Văn wrote:

When I ran the below code lines:
gap >S:=SymmetricGroup(3);;
gap >G:=DirectProduct(S);;
gap >G=S;
       true

gap >C:=CyclicGroup(3);;
gap >G:=DirectProduct(C);;
gap >G=C;
       false


The issue is that "equal" and "isomorphic" are not the same thing for groups (among other structures). In fact in GAP there is also the notion of "identical", but that doesn't apply to your example.
So identical==>equal==>isomorphic, but the converses are false.

For your example:

gap> S:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> G:=DirectProduct(S);
Group([ (1,2,3), (1,2) ])
gap> G=S;
true
gap> IsomorphismGroups(G,S);
[ (1,2,3), (1,2) ] -> [ (1,2,3), (1,2) ]

gap> C:=CyclicGroup(3);
<pc group of size 3 with 1 generators>
gap> G:=DirectProduct(C);
<pc group of size 3 with 1 generators>
gap> G=C;
false
gap> IsomorphismGroups(G,C);
[ f1 ] -> [ f1 ]

gap> S=C;
false
gap> IsomorphismGroups(S,C);
fail


--mike
_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum

Reply via email to