Hello everyone,
I want know if some one has been trying already to change the exact
solution, and the second member to a polynomes. I want make a test with a
function which satisfies the homogeneous Dirichlet boundary conditions.
So for exemple, for the Laplacian problem, N=2 dimensions, I make :
/* exact solution */
scalar_type sol_u(const base_node &x) { return (pow(x[0],2) -
pow(x[0],1))*pow(x[1],1); }
/* righ hand side */
scalar_type sol_f(const base_node &x)
{ return 2*pow(x[1],1); }
/* gradient of the exact solution */
base_small_vector sol_grad(const base_node &x)
{ base_small_vector res(2);
res[0] = (2*pow(x[0],1) - 1)*pow(x[1],1);
res[1] = pow(x[0],2) - pow(x[0],1);
return res; }
But with these functions I can't find the good result, and the good order
of convergence, I found the error :
*L2 error = 0.1676465135960112*
*H1 error = 0.6176167218760237*
*Linfty error = 0.3381665840490764*
The same problem for the elastostatic problem also.
Thank you, in advance for your help.
--
*ZAIM Yassine *
*PhD Student in Applied Mathematics*
_______________________________________________
Getfem-users mailing list
[email protected]
https://mail.gna.org/listinfo/getfem-users