Dear Yassine ZAIM,

The test program "Laplacian" solves the problem

- \Delta u = f
+ boundary conditions

where \Delta is the Laplace operator.
The consequence is that the right-hand side has the wrong sign in your
expression.

Yves.



Le 18/03/2016 17:50, Yassine ZAIM a écrit :
> /* exact solution */
> scalar_type sol_u(const base_node &x) { return (pow(x[0],2) -
> pow(x[0],1))*pow(x[1],1); }
>
> /* righ hand side */
> scalar_type sol_f(const base_node &x)
> { return 2*pow(x[1],1); }
>
> /* gradient of the exact solution */
> base_small_vector sol_grad(const base_node &x)
> { base_small_vector res(2);
> res[0] = (2*pow(x[0],1) - 1)*pow(x[1],1);
> res[1] = pow(x[0],2) - pow(x[0],1);
> return res; }


-- 

  Yves Renard ([email protected])       tel : (33) 04.72.43.87.08
  Pole de Mathematiques, INSA-Lyon             fax : (33) 04.72.43.85.29
  20, rue Albert Einstein
  69621 Villeurbanne Cedex, FRANCE
  http://math.univ-lyon1.fr/~renard

---------

_______________________________________________
Getfem-users mailing list
[email protected]
https://mail.gna.org/listinfo/getfem-users

Reply via email to