Dandandan commented on code in PR #2156:
URL: https://github.com/apache/arrow-datafusion/pull/2156#discussion_r845206360


##########
datafusion/physical-expr/src/expressions/in_list.rs:
##########
@@ -32,13 +33,19 @@ use arrow::{
     record_batch::RecordBatch,
 };
 
-use crate::PhysicalExpr;
+use crate::{expressions, PhysicalExpr};
 use arrow::array::*;
 use arrow::buffer::{Buffer, MutableBuffer};
 use datafusion_common::ScalarValue;
 use datafusion_common::{DataFusionError, Result};
 use datafusion_expr::ColumnarValue;
 
+/// Size at which to use a Set rather than Vec for `IN` / `NOT IN`
+/// Value chosen to be consistent with Spark
+/// 
https://github.com/apache/spark/blob/4e95738fdfc334c25f44689ff8c2db5aa7c726f2/sql/catalyst/src/main/scala/org/apache/spark/sql/internal/SQLConf.scala#L259-L265
+/// TODO: add switch codeGen in In_List
+static OPTIMIZER_INSET_THRESHOLD: usize = 10;

Review Comment:
   Cool analysis!
   I am wondering if other data types make it a bit different, such as strings 
/ utf8 arrays? I expect the conversion to be a bit slower there, because of the 
extra conversion/allocations needed.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to