paleolimbot commented on code in PR #13397: URL: https://github.com/apache/arrow/pull/13397#discussion_r918105863
########## r/src/compute.cpp: ########## @@ -574,3 +576,171 @@ SEXP compute__CallFunction(std::string func_name, cpp11::list args, cpp11::list std::vector<std::string> compute__GetFunctionNames() { return arrow::compute::GetFunctionRegistry()->GetFunctionNames(); } + +class RScalarUDFKernelState : public arrow::compute::KernelState { + public: + RScalarUDFKernelState(cpp11::sexp exec_func, cpp11::sexp resolver) + : exec_func_(exec_func), resolver_(resolver) {} + + cpp11::function exec_func_; + cpp11::function resolver_; +}; + +arrow::Result<arrow::TypeHolder> ResolveScalarUDFOutputType( + arrow::compute::KernelContext* context, + const std::vector<arrow::TypeHolder>& input_types) { + return SafeCallIntoR<arrow::TypeHolder>( + [&]() -> arrow::TypeHolder { + auto kernel = + reinterpret_cast<const arrow::compute::ScalarKernel*>(context->kernel()); + auto state = std::dynamic_pointer_cast<RScalarUDFKernelState>(kernel->data); + + cpp11::writable::list input_types_sexp(input_types.size()); + for (size_t i = 0; i < input_types.size(); i++) { + input_types_sexp[i] = + cpp11::to_r6<arrow::DataType>(input_types[i].GetSharedPtr()); + } + + cpp11::sexp output_type_sexp = state->resolver_(input_types_sexp); + if (!Rf_inherits(output_type_sexp, "DataType")) { + cpp11::stop("arrow_scalar_function resolver must return a DataType"); + } + + return arrow::TypeHolder( + cpp11::as_cpp<std::shared_ptr<arrow::DataType>>(output_type_sexp)); + }, + "resolve scalar user-defined function output data type"); +} + +arrow::Status CallRScalarUDF(arrow::compute::KernelContext* context, + const arrow::compute::ExecSpan& span, + arrow::compute::ExecResult* result) { + if (result->is_array_span()) { + return arrow::Status::NotImplemented("ArraySpan result from R scalar UDF"); + } + + return SafeCallIntoRVoid( + [&]() { + auto kernel = + reinterpret_cast<const arrow::compute::ScalarKernel*>(context->kernel()); + auto state = std::dynamic_pointer_cast<RScalarUDFKernelState>(kernel->data); + + cpp11::writable::list args_sexp(span.num_values()); + + for (int i = 0; i < span.num_values(); i++) { + const arrow::compute::ExecValue& exec_val = span[i]; + if (exec_val.is_array()) { + std::shared_ptr<arrow::Array> array = exec_val.array.ToArray(); + args_sexp[i] = cpp11::to_r6<arrow::Array>(array); + } else if (exec_val.is_scalar()) { + std::shared_ptr<arrow::Scalar> scalar = exec_val.scalar->GetSharedPtr(); + args_sexp[i] = cpp11::to_r6<arrow::Scalar>(scalar); + } + } + + cpp11::sexp batch_length_sexp = cpp11::as_sexp(span.length); + + std::shared_ptr<arrow::DataType> output_type = result->type()->GetSharedPtr(); + cpp11::sexp output_type_sexp = cpp11::to_r6<arrow::DataType>(output_type); + cpp11::writable::list udf_context = {batch_length_sexp, output_type_sexp}; + udf_context.names() = {"batch_length", "output_type"}; + + cpp11::sexp func_result_sexp = state->exec_func_(udf_context, args_sexp); + + if (Rf_inherits(func_result_sexp, "Array")) { + auto array = cpp11::as_cpp<std::shared_ptr<arrow::Array>>(func_result_sexp); + + // handle an Array result of the wrong type + if (!result->type()->Equals(array->type())) { + arrow::Datum out = ValueOrStop(arrow::compute::Cast(array, result->type())); + std::shared_ptr<arrow::Array> out_array = out.make_array(); + array.swap(out_array); + } + + result->value = std::move(array->data()); + } else if (Rf_inherits(func_result_sexp, "Scalar")) { + auto scalar = cpp11::as_cpp<std::shared_ptr<arrow::Scalar>>(func_result_sexp); + + // handle a Scalar result of the wrong type + if (!result->type()->Equals(scalar->type)) { + arrow::Datum out = ValueOrStop(arrow::compute::Cast(scalar, result->type())); + std::shared_ptr<arrow::Scalar> out_scalar = out.scalar(); + scalar.swap(out_scalar); + } + + auto array = ValueOrStop( + arrow::MakeArrayFromScalar(*scalar, span.length, context->memory_pool())); + result->value = std::move(array->data()); + } else { + cpp11::stop("arrow_scalar_function must return an Array or Scalar"); + } + }, + "execute scalar user-defined function"); +} + +// [[arrow::export]] +void RegisterScalarUDF(std::string name, cpp11::sexp func_sexp) { + cpp11::list in_type_r(func_sexp.attr("in_type")); + cpp11::list out_type_r(func_sexp.attr("out_type")); + R_xlen_t n_kernels = in_type_r.size(); + + if (n_kernels == 0) { + cpp11::stop("Can't register user-defined function with zero kernels"); + } + + // compute the Arity from the list of input kernels + std::vector<int64_t> n_args(n_kernels); + for (R_xlen_t i = 0; i < n_kernels; i++) { + auto in_types = cpp11::as_cpp<std::shared_ptr<arrow::Schema>>(in_type_r[i]); + n_args[i] = in_types->num_fields(); + } + + const int64_t min_args = *std::min_element(n_args.begin(), n_args.end()); + const int64_t max_args = *std::max_element(n_args.begin(), n_args.end()); Review Comment: I changed this so that it's clear what's happening (just making sure that all the user-provided kernels accept the same number of arguments). I don't fully understand how the input type matching works with variable number of arguments and I don't think the Python UDF supports it yet, so I thought it best to put this restriction on for now? -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@arrow.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org